• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New research supports volcanic origin of Kiruna-type iron ores

Bioengineer by Bioengineer
April 12, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The origin of giant apatite-iron oxide ores of the so-called ‘Kiruna-type’ has been the topic of a long standing debate that has lasted for over 100 years. In a new article, published in Nature Communications, a team of scientists presents new and unambiguous data in favour of a magmatic origin for these important iron ores. The study was led by researchers from Uppsala University in Sweden.

Despite globally increasing demand for rare metals, iron is the overall most important metal for modern industry. Over 90 % of Europe´s total iron production comes from apatite-iron oxide ores, also referred to as Kiruna-type ores, named after the extremely large and iconic Kiruna iron ore deposit in northern Sweden. Today the Swedish deposits at Kiruna and Malmberget are the largest and most important iron producers in Europe, and Kiruna-type deposits represent an iron source of global importance. These deposits also have a large future potential for production of sought-after and critical rare earth elements (REE) as well as phosphorous, another element deemed critical for Europe’s future development.

The origin and actual process of formation of Kiruna-type ores has remained highly controversial for over 100 years, with suggestions ranging from a purely low-temperature hydrothermal origin to sea floor precipitation to a high-temperature volcanic origin from magma or high-temperature magmatic fluids. To remedy this problem, a team of scientists from Uppsala University, the Geological Survey of Sweden, the Geological Survey of Iran, the Indian Institute of Technology in Bombay, and the Universities of Cardiff and Cape Town, led by Uppsala researcher Prof. Valentin Troll, employed Fe and O isotopes, the main elements in magnetite (Fe3O4), from Sweden, Chile and Iran to chemically fingerprint the processes that led to formation of these ores.

By comparing their data from Kiruna-type iron ores with an extensive set of magnetite samples from volcanic rocks as well as from known low-temperature hydrothermal iron ore deposits, the researchers were able to show that more than 80 % of their magnetite samples from Kiruna-type apatite-iron oxide ores were formed by high-temperature magmatic processes in what must represent volcanic to shallow sub-volcanic settings. The new results constitute an important advance in our understanding of Kiruna-type ores and will be of help for the interpretation of, and future exploration for, apatite-iron oxide deposits worldwide.

###

Media Contact
Valentin R. Troll
[email protected]
http://dx.doi.org/10.1038/s41467-019-09244-4

Tags: Earth ScienceGeographyGeology/SoilGeophysics/Gravity
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.