• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

New research opens door to more efficient chemical processes across spectrum of industries

Bioengineer by Bioengineer
March 1, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Chemical processes that are more efficient and less expensive may be coming to industries ranging from battery manufacturing to detergent production thanks to an Oregon State University researcher’s work advancing metal oxides as catalysts.

The findings, by a collaboration that included scientists from the University of Delaware, were published in Nature Catalysis.

A catalyst increases the rate of a chemical reaction without being consumed by the reaction – thus it is able to perform the rate-increase function repeatedly. Catalysts are involved in the production of most chemicals significant in industry – plastics, dyes, explosives, fuels and more.

Catalysts have traditionally been based on precious metals such as platinum and palladium, explains Konstantinos Goulas, assistant professor of chemical engineering in the OSU College of Engineering and one of the authors of the study.

Those precious metals are expensive and, as catalysts for biomass conversion, “unselective” – that is, their ability to direct a reaction to yield a particular chemical is limited.

“That’s why we undertook this study,” Goulas said. “This work was inspired by our research on the conversion of biomass, such as wood and agricultural residues, into fuels and commodity chemicals. We wanted to understand the principles of biomass conversion using oxide-based catalysts, which previous studies had suggested were selective catalysts.”

An oxide catalyst is a compound that contains at least one other element in addition to oxygen. Oxides are very abundant and can be relatively inexpensive; for example, most of the earth’s crust consists of metal oxides.

By comparing how fast specific chemicals can be made on a variety of metal oxide catalysts, the team gained important insights related to what properties result in the best metal-oxide catalysts.

“Our study shows that oxide properties that are easy to determine, such as the Gibbs Free Energy of formation of the oxide, can predict the oxide’s reactivity. This opens up new pathways for rational catalyst design and more efficient processes in many fields, from industrial chemistry to pollution abatement,” Goulas said.

###

The U.S. Department of Energy supported this research.

Media Contact
Konstantinos Goulas
[email protected]

Related Journal Article

http://bit.ly/2TjDvKc
http://dx.doi.org/10.1038/s41929-019-0234-6

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPollution/RemediationTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

New Guidelines for Managing Thrombosis in Burn Patients

Compact DAC Leveraging Optical Kerr Effect Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.