• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New research identifies the strengths and weaknesses of super material

Bioengineer by Bioengineer
October 1, 2019
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Aarhus University and the University of Cambridge are first to measure and set guidelines for bolted joints using the up-coming replacement for Kevlar: the ultra-strong material with the catchy name ultra-high molecular weight polyethylene

IMAGE

Credit: Simon Skovsgård

Imagine a velvety, soft material that is extremely light, but also strong enough to stop a bullet. This is close to a description of ultra-high molecular weight polyethylene (UHMWPE), a super-plastic material commercially known as Dyneema or Spectra, which is already taking over from the para-aramid fibrous material, Kevlar, in e.g. bullet-proof jackets.

There is also much need for the super material in many other applications than body armour, and therefore researchers have now set up guidelines and failure maps for use of the material in joints with steel bolts. The research team is being led by Simon Skovsgård, PhD and MSc in engineering at the Department of Engineering, Aarhus University, and Professor Norman Fleck at the University of Cambridge.

The results have just been published in the International Journal of Solids and Structures.

“The tests we’ve done showed that the material began to deform at the joints, but the fibres weren’t broken. This is interesting in relation to other popular composite materials, such as carbon fibre composites, which snaps suddenly. Here, although we can tear the material, it’s really difficult to actually break the fibres,” says Simon Skovsgård.

UHMWPE consists of extremely long chains of polyethylene (PE). And these long chains strengthen the intermolecular interactions of the substance and enable the material to transfer stress loads effectively to the polymer skeleton.

This means that UHMWPE fibres has an incredibly high tensile strength compared to many other thermoplastics, and this also means that the material is much stronger than steel in the fibre direction. The tensile strength of high-strength steel is approx. 900 MPa, but in order to break the fibres in UHMWPE, you need approximately 3000 MPa.

“UHMWPE fibre plates are a collection of these incredibly strong fibres. It’s almost impossible to extend and break the fibres, but if you twist or shear the material, it is soft. This combination makes it easy for the material to absorb energy,” says Simon Skovsgård.

The new research results are good news for the commercial use of UHMWPE, which is increasingly being introduced in the shipping industry in containers, ropes and nets, as well as armour for vehicles and personnel and in the textile industry. So far, there has been no experience with using the material combined with other materials.

###

Media Contact
Simon Skovsgård
[email protected]

Original Source

http://eng.au.dk/en/news-and-events/news/show/artikel/translate-to-english-forskning-kortlaegger-supermateriales-styrker-og-svagheder/

Related Journal Article

http://dx.doi.org/10.1016/j.ijsolstr.2019.08.014

Tags: Chemistry/Physics/Materials SciencesMaterialsMechanical EngineeringMolecular PhysicsPolymer ChemistryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.