• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New ‘pulsing’ ultrasound technique improves drug delivery to brains of mice

Bioengineer by Bioengineer
March 26, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists currently use long-wave pulses of ultrasound to deliver drugs, which can cause side effects. These new findings from Imperial on shorter-wave pulses could have implications for how drugs are used to help patients of Alzheimer’s and other neurological diseases.

Neurological diseases like Alzheimer’s can be difficult to treat with drugs because they are often blocked by the protective membrane known as the blood brain barrier (BBB). The layer surrounds blood vessels in the brain and allows very few molecules to pass to the brain from the blood. This protects the brain from harmful substances but can also hinder drugs getting to where they can act.

One avenue of research involves prying open the BBB to let drugs into the brain. This is done by injecting mice with tiny bubbles, or ‘microbubbles’, before applying long-wave pulses of ultrasound radiation to the brain.

The ultrasound pulses change the pressure in the blood vessel, causing the microbubbles to expand and contract. As they do so, they gently pry open the BBB.

However, the long pulses last at least ten milliseconds at a time, which can cause side effects. The longer the BBB stays open, the more chance there is for tissue damage and for harmful molecules to reach the brain.

Now, in a new study published in Radiology, lead author Dr James Choi and colleagues at Imperial compared long-wave ultrasound with shorter-wave, more rapid ultrasound pulses. They found their new technique was more effective and potentially much safer than current methods.

The research is led by Imperial College London and funded by Alzheimer’s Research UK.

Lead author Dr Choi, from Imperial’s Department of Bioengineering, said: “We have now found a seemingly effective way of getting potentially effective drugs to where they need to be.”

The researchers injected 28 mice with microbubbles, before using short-wave pulses on 14 mice, and long-wave pulses on the other 14.

They found that the short-wave pulses delivered drugs effectively throughout the brain without the surrounding tissue damage that can be caused by longer waves. The BBB also returned to its usual closed state within ten minutes, minimising potential damage.

Dr Choi explained: “The blood brain barrier is relatively simple to open but current techniques are unable to do so safely – which is why we haven’t been able to use them in humans without side effects.”

The researchers say the new findings could eventually lead to new techniques for getting drugs to human brains in cases like Alzheimer’s, brain cancers, and other disorders involving the brain.

Dr Choi said: “Our new way of applying the ultrasound could, following further research, literally open up the brain to all sorts of drugs we had previously disregarded.

“Many potential drugs that looked promising in laboratory settings never moved on to use in people – possibly because they were blocked by the blood brain barrier when it came to using them in humans.

Dr Sara Imarisio, Head of Research at Alzheimer’s Research UK, said: “With over 550,000 people in the UK living with Alzheimer’s and currently no treatment to slow down or stop the disease, we urgently need to see research to help deliver life-changing drugs.

“While the blood brain barrier protects the brain against damage and infection, it does make it very difficult to deliver treatments into the brain. Although this study exploring how we can penetrate the blood brain barrier was conducted in mice, it’s a critical step before technology like this can be tested in people.

“Alzheimer’s Research UK are committed to dementia drug discovery and it’s vital we continue to explore all possible angles to help deliver real breakthroughs for people living with dementia.”

###

This study was supported by Biotechnology and Biological Sciences Research Council, the Wellcome Trust, and Alzheimer’s Research UK.

Media Contact
Caroline Brogan
[email protected]

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

AI-Enabled Stethoscope Proves Twice as Effective at Detecting Valvular Heart Disease in Clinical Settings

February 5, 2026

Study Finds No Link Between COVID-19 Vaccination and Decline in Birth Rates

February 5, 2026

Colorectal Cancer Osteopontin Drives Pro-Metastatic Macrophages

February 5, 2026

Geriatric In-Home Deaths: Insights from Autopsy Findings

February 5, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Enabled Stethoscope Proves Twice as Effective at Detecting Valvular Heart Disease in Clinical Settings

Study Finds No Link Between COVID-19 Vaccination and Decline in Birth Rates

Graz University of Technology’s Innovations Aim to Minimize Railway Network Disruptions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.