• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New multicomponent reaction frontiers

Bioengineer by Bioengineer
November 4, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An innovative protocol eases the synthesis of high structural complex molecules

IMAGE

Credit: Angewandte Chemie International Edition

The synthesis of complex molecules such as drugs, requires a process that sometimes involves several phases that increase its cost and harden the access to the product. Now, a team of the University of Barcelona has designed a new methodological approach that combines multicomponent reactions with domino type processes -continuous transformations on an only compound- to ease the synthesis of high structural complex molecules.
he study, published in the journal Angewandte Chemie International Edition, is led by Professor Rodolfo Lavilla, from the Faculty of Pharmacy and Food Sciences and the Institute of Biomedicine (IBUB) of the University of Barcelona. The study, whose first signatories are researchers Ouldouz Ghasghaei and Marina Pedrola (UB-IBUB), counts on the participation of experts from Masaryk University (Czech Republic) and the Leibniz Research Institute for Environmental Medicine (Germany).

Multicomponent reactions: more simplicity and efficiency

Multicomponent reactions are protocols that ease the chemical synthesis of new high complexity and structural diversity compounds. These reactions can form several bonds and generate new molecules with a minimum amount of three reactives. These processes are very direct and help obtain molecules in a quick and efficient way (simplicity, atom economy, etc.) compared to traditional processes. Also, these are also the most sustainable synthetic pathways from an environmental perspective (saving resources, less waste, etc.).

In the study, the experts create a main principle by which the polarity change of a reactive in a multicomponent process unchains domino reactions that enable the access to a complex connectivity. This principle would explain many transformations and would ease the design of new processes in the field of synthetic chemistry.

According to Lavilla, the new principle has been developed “with indole nuclei, a heterocycle present in many natural molecules, and particularly in drugs. Also, the compounds that were prepared with this methodology present a high structural variability (linear and angular fused rings, rigid or flexible compounds, etc.)”. In the biological field, most of the products the researchers synthetized “present a powerful activity as ligands of the aryl hydrocarbon receptor”, he adds, “a molecule with a determining role in several biological processes that is regarded as a potential pharmacological target for the development of new drugs”.

So far, only a few specific cases of multicomponent reactions associated with a domino process had been described. “Both domino and multicomponent reactions are very complex at a mechanistic scale. There are many bonds, and many elemental phases, reaction intermediates, and so on”, notes the researcher. He adds that by merging these two reaction families into an only process “we increase the synthetic complexity extraordinarily. Therefore, we consider the description of these processes to be an advance to generalize them and expand them into combinations in synthetic chemistry”.

Technology for a greener chemistry

Multicomponent reactions eased the development of new molecules of pharmaceutical and biomedical interest (biological probes, fluophores, complex molecules). These techniques are getting more exploited by other industrial sectors every day.

“However, there are very few general multicomponent reactions -about a dozen compared to the hundreds of biomolecular reactions-, and this limits its applicability. In this sense, a great scientific activity is being carried out in this field to ease the access to this type of general connectivity through these reactions, and enable its application to the development of all types of organic compounds at a large scale (drugs, plastics, fertilizers, etc.)”, concludes the researcher.

###

Media Contact
Rosa Martínez
[email protected]

Original Source

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202011253

Related Journal Article

http://dx.doi.org/10.1002/anie.202011253

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025
Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025

Lab-Grown Slow-Twitch Muscles Achieved Through Soft Gel Innovation

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reviving Resilience: The Role of Algae in Coral Recovery Post-Bleaching

Short Web-Based Dance Boosts Health in Older Adults

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.