• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, August 14, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New method makes generic polymers luminescent

Bioengineer by Bioengineer
June 14, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Koji Kubota et al., Angewandte Chemie International Edition. May 14, 2021

Hokkaido University researchers have developed a simple method that converts existing generic polymers into luminescent polymers using mechanical force.

Researchers from Hokkaido University have successfully developed a new method to give luminescent properties to generic polymers, such as polystyrene and polyethylene. The technique, which was published in the journal Angewandte Chemie International Edition, makes it possible to easily prepare luminescent polymers without using complicated organic synthetic methods.

“Luminescent polymers are widely used in modern society, in applications such as organic lasers, solar cells, sensors and bioimaging, but their preparation often requires multiple chemical synthesis steps, which are both time and labor intensive,” explains Professor Hajime Ito, one of the authors of the study and Vice Director of the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) at Hokkaido University.

To overcome this problem, the research team investigated whether luminescent polymers could be prepared using mechanical force as opposed to sophisticated chemical synthesis.

“It is well known that mechanically stimulating polymers, for example by grinding or crushing them, generates reactive species called free radicals,” says Associate Professor Koji Kubota from Hokkaido University, a paper co-author. “Inspired by this phenomenon, as well as our previous research into mechanical-force-induced luminescence and reactions, we wanted to investigate whether we could find a simpler method for preparing functional luminescent materials.”

In this study, the researchers placed the polymer and pre-fluorescent radical reactants together in a ball milling jar containing stainless steel balls. The jar was then shaken, causing the balls to grind the solid compounds and initiate a reaction. During this process, the covalent bonds in the polymer chains were cleaved and the pre-fluorescent molecules were inserted into the polymer, gaining significantly higher emission intensity. The researchers successfully applied this method to polystyrene, polyethylene, polyphenylene sulfide, polysulfone, and other generic polymers.

“With further development, the method could potentially be adapted to introduce other functions to generic polymers,” says Hokkaido University Assistant Professor Mingoo Jin.

“In the future, we hope to use this method to develop novel sensing and recording materials that change colour in response to mechanical stimuli,” Hajime Ito added.

This could pave the way for “smart” materials for a wide range of applications, such as bioimaging reagents and pressure-sensitive sensors.

###

Media Contact
Naoki Namba
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/new-method-makes-generic-polymers-luminescent/

Related Journal Article

http://dx.doi.org/10.1002/anie.202105381

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

SEM micrograph of a cuboid parameter sweep comprising 10 x 10 elements fabricated via TPP from the photoresist IP-Q.

Overcoming a major manufacturing constraint

August 12, 2022
Bose-Einstein condensate

A simple way of sculpting matter into complex shapes

August 12, 2022

UT researchers receive $2.75 million grant to investigate movement of amphibian pathogens in wildlife trade networks

August 12, 2022

Princeton’s Sorensen lab develops concise synthesis of pleurotin

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonWeather/StormsZoology/Veterinary ScienceUrbanizationVehiclesVirologyVirusWeaponryViolence/CriminalsVaccineVaccinesUrogenital System

Recent Posts

  • Experimental verification on steering flight of honeybee by electrical stimulation
  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In