• Scienmag
  • Contcat Us
Saturday, December 14, 2019
BIOENGINEER.ORG
No Result
View All Result
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New material breaks world record turning heat into electricity

Bioengineer by Bioengineer
November 14, 2019
in Chemistry
0

A new type of material generates electrical current very efficiently from temperature differences. This allows sensors and small processors to supply themselves with energy wirelessly.

IMAGE

Credit: TU Wien


Thermoelectric materials can convert heat into electrical energy. This is due to the so-called Seebeck effect: If there is a temperature difference between the two ends of such a material, electrical voltage can be generated and current can start to flow. The amount of electrical energy that can be generated at a given temperature difference is measured by the so-called ZT value: The higher the ZT value of a material, the better its thermoelectric properties.

The best thermoelectrics to date were measured at ZT values of around 2.5 to 2.8. Scientists at TU Wien (Vienna) have now succeeded in developing a completely new material with a ZT value of 5 to 6. It is a thin layer of iron, vanadium, tungsten and aluminium applied to a silicon crystal.

The new material is so effective that it could be used to provide energy for sensors or even small computer processors. Instead of connecting small electrical devices to cables, they could generate their own electricity from temperature differences. The new material has now been presented in the journal Nature.

Electricity and Temperature

“A good thermoelectric material must show a strong Seebeck effect, and it has to meet two important requirements that are difficult to reconcile,” says Prof. Ernst Bauer from the Institute of Solid State Physics at TU Wien. “On the one hand, it should conduct electricity as well as possible; on the other hand, it should transport heat as poorly as possible. This is a challenge because electrical conductivity and thermal conductivity are usually closely related.”

At the Christian Doppler Laboratory for Thermoelectricity, which Ernst Bauer established at TU Wien in 2013, different thermoelectric materials for different applications have been studied over the last few years. This research has now led to the discovery of a particularly remarkable material – a combination of iron, vanadium, tungsten and aluminium.

“The atoms in this material are usually arranged in a strictly regular pattern in a so-called face-centered cubic lattice,” says Ernst Bauer. “The distance between two iron atoms is always the same, and the same is true for the other types of atoms. The whole crystal is therefore completely regular”.

However, when a thin layer of the material is applied to silicon, something amazing happens: the structure changes radically. Although the atoms still form a cubic pattern, they are now arranged in a space-centered structure, and the distribution of the different types of atoms becomes completely random. “Two iron atoms may sit next to each other, the places next to them may be occupied by vanadium or aluminum, and there is no longer any rule that dictates where the next iron atom is to be found in the crystal,” explains Bauer.

This mixture of regularity and irregularity of the atomic arrangement also changes the electronic structure, which determines how electrons move in the solid. “The electrical charge moves through the material in a special way, so that it is protected from scattering processes. The portions of charge travelling through the material are referred to as Weyl Fermions,” says Ernst Bauer. In this way, a very low electrical resistance is achieved.

Lattice vibrations, on the other hand, which transport heat from places of high temperature to places of low temperature, are inhibited by the irregularities in the crystal structure. Therefore, thermal conductivity decreases. This is important if electrical energy is to be generated permanently from a temperature difference – because if temperature differences could equilibrate very quickly and the entire material would soon have the same temperature everywhere, the thermoelectric effect would come to a standstill.

Electricity for the Internet of Things

“Of course, such a thin layer cannot generate a particularly large amount of energy, but it has the advantage of being extremely compact and adaptable,” says Ernst Bauer. “We want to use it to provide energy for sensors and small electronic applications.” The demand for such small-scale generators is growing quickly: In the “Internet of Things”, more and more devices are linked together online so that they automatically coordinate their behavior with each other. This is particularly promising for future production plants, where one machine has to react dynamically to another.

“If you need a large number of sensors in a factory, you can’t wire all of them together. It’s much smarter for the sensors to be able to generate their own power using a small thermoelectric device,” says Bauer.

###

Contact

Prof. Ernst Bauer

Institute for Solid State Physics

TU Wien

Wiedner Hauptstraße 8-19; 1040 Vienna

T +43-1-58801-13160

[email protected]

Media Contact
Florian Aigner
[email protected]
43-158-801-41027

Original Source

https://www.tuwien.at/en/tu-wien/news/news-articles/news/new-material-breaks-world-record-turning-heat-into-electricity/

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1751-9

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)HardwareMaterialsNanotechnology/Micromachines

Related Posts

IMAGE
Chemistry

Following the lizard lung labyrinth

by Bioengineer
December 13, 2019
IMAGE
Chemistry

Growing carbon nanotubes with the right twist

by Bioengineer
December 13, 2019
IMAGE
Chemistry

Nanoscience breakthrough: Probing particles smaller than a billionth of a meter

by Bioengineer
December 13, 2019

POPULAR NEWS

  • IMAGE

    What felled the great Assyrian Empire? A Yale professor weighs in

    0 shares
    Share 0 Tweet 0
  • Scientists discover how the molecule-sorting station in our cells is formed and maintained

    0 shares
    Share 0 Tweet 0
  • Nearly extreme black holes which attempt to regrow hair become bald again

    0 shares
    Share 0 Tweet 0
  • Early DNA lineages shed light on the diverse origins of the contemporary population

    0 shares
    Share 0 Tweet 0
  • ‘Are we alone?’ Study refines which exoplanets are potentially habitable

    0 shares
    Share 0 Tweet 0
ADVERTISEMENT

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent Posts

  • Dartmouth study finds conscious visual perception occurs outside the visual system
  • Mitochondria are the ‘canary in the coal mine’ for cellular stress
  • Grant project aims to improve food security for remote indigenous populations in Australia
  • Following the lizard lung labyrinth

Tags

Aging Agriculture Atmospheric Science Behavior Biochemistry Biodiversity Biology Biomedical/Environmental/Chemical Engineering Biotechnology cancer Cardiology Cell Biology Chemistry/Physics/Materials Sciences Climate Change Clinical Trials Computer Science Earth Science Ecology/Environment Electrical Engineering/Electronics Evolution Genes Genetics Health Care Health Care Systems/Services Health Professionals Immunology/Allergies/Asthma Infectious/Emerging Diseases Marine/Freshwater Biology Materials Medicine/Health Mental Health Microbiology Molecular Biology Nanotechnology/Micromachines neurobiology Nutrition/Nutrients Pediatrics Pharmaceutical Science Physiology Plant Sciences Public Health Research/Development Social/Behavioral Science Technology/Engineering/Computer Science Zoology/Veterinary Science
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In