• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New insight on potent HIV antibody could improve vaccine design

Bioengineer by Bioengineer
February 20, 2019
in Immunology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Early mutation in neutralizing antibody gives it flexibility to adapt to virus’s changes

DURHAM, N.C. – In the quest to develop an effective HIV vaccine, researchers have focused attention on identifying and targeting the region of the virus’s outer envelope where a lineage of antibodies are able to dock and neutralize the virus.

But true to form with HIV, these broadly neutralizing antibodies, or bnAbs, are highly complex and arise under an intricate series of events that have been difficult to trace backward to their origins and recreate.

A new observation, led by researchers at the Duke Human Vaccine Institute, highlights the importance of previously unstudied mutations that arises early in bnAbs, giving the antibodies the flexibility to adapt to changes in the virus’s outer envelope protein structure. This flexibility enables the antibody to dock on diverse strains of the virus and more potently neutralize them.

The finding was published this month in the journal Nature Communications.

“We focused on mutations in a specific region of the antibody called the ‘elbow region,’ which is required for making the antibodies more flexible and for their function in neutralizing HIV-1 viruses,” said senior author S. Munir Alam, Ph.D., director of the Duke Human Vaccine Institute Laboratory of Immune Recognition and Biomolecular Interaction Analysis Core.

“We found that the selection of key elbow mutations and the flexibility trait is a required step in the early stage of maturation of a broadly neutralizing lineage,” Alam said.

Alam and colleagues, including co-lead authors Rory Henderson and Brian E. Watts, used biophysical tools and molecular dynamic simulation methods that enabled the team to study changes in antibody molecular motion over time. This modeling enabled them to learn of the additional roadblock to HIV bnAb development.

“Vaccine design strategies will need to incorporate the requirement of the selection of key elbow region mutations in the early stage of the immunization regimen,” Henderson said.

###

In addition to Alam, Henderson and Watts, study authors include Hieu N. Ergin, Kara Anasti, Robert Parks, Shi-Mao Xia, Ashley Trama, Hua-Xin Liao, Keven O. Saunders, Mattia Bonsignori, Keven Wiehe and Barton F. Haynes.

Media Contact
Sarah Avery
[email protected]
919-724-5343
http://dx.doi.org/10.1038/s41467-019-08415-7

Tags: AIDS/HIVCell BiologyImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthVaccinesVirology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.