• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New heat model may help electronic devices last longer

Bioengineer by Bioengineer
December 16, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — A University of Illinois-based team of engineers has found that the model currently used to predict heat loss in a common semiconductor material does not apply in all situations. By testing the thermal properties of gallium nitride semiconductors fabricated using four popular methods, the team discovered that some techniques produce materials that perform better than others. This new understanding can help chip manufacturers find ways to better diffuse the heat that leads to device damage and decreased device lifespans.

Silicon chips are being pushed to their limit to meet the demands of today’s electronic devices. Gallium nitride, another semiconductor material, is better suited for use in high-voltage and high-current applications like those needed for 5G phones, “internet of things” devices, robotics and autonomous vehicles. Gallium nitride chips are already in use, but there are no systematic studies that examine the thermal properties of the various forms of the material, the researchers said. Their findings are published in the Journal of Applied Physics.

Gallium nitride chips are produced by depositing gallium nitride vapor onto a surface where it crystallizes into a solid, the researchers said.

“The composition and atomic structure of the surface used to grow the crystals influences the number of defects in the final product,” said Can Bayram, an electrical and computer engineering professor and lead author of the study. “For example, crystals grown on silicon surfaces produce a semiconductor with many defects – resulting in lower thermal conductivity and hotter hotspots – because the atomic structures of silicon and gallium nitride are very different.”

The team tested the thermal conductivity of gallium nitride grown using the four most technologically important fabrication techniques: hydride vapor phase epitaxy, high nitride pressure, vapor deposition on sapphire and vapor deposition on silicon.

To figure out how the different fabrication techniques influence the thermal properties of gallium nitride, the team measured thermal conductivity, defect density and the concentration of impurities of each material.

“Using our new data, we were able to develop a model that describes how defects affect the thermal properties of gallium nitride semiconductors,” Bayram said. “This model provides a means to estimate the thermal conductivity of samples indirectly using defect data, which is easier than directly measuring the thermal conductivity.”

The team found that silicon – the most economical of all of the surfaces use to grow gallium nitride – produces crystals with the highest defect density of the four popular fabrication methods. Deposition on sapphire makes a better crystal with higher thermal conductivity and lower defect density, but this method is not nearly as economical. The hydride vapor epitaxy and high nitride pressure techniques produce superior products in terms of thermal properties and defect density, but the processes are very expensive, Bayram said.

Gallium nitride-based chips that use crystals grown on silicon are probably adequate for the consumer electronics market, where cost and affordability are key, he said. However, military-grade devices that require better reliability will benefit from chips made using the more expensive processes.

“We are trying to create a higher efficiency system so that we can get more out of our devices – maybe one that can last 50 years instead of five,” Bayram said. “Understanding how heat dissipates will allow us to reengineer systems to be more resilient to hotspots. This work, performed entirely at the U. of I., lays the foundation in thermal management of the technologically important gallium nitride-based semiconductor devices.”

###

Bayram also is affiliated with the Carle Illinois College of Medicine at the U. of I.

The Air Force Office of Scientific Research supported this study.

Editor’s notes:

To reach Can Bayram, call 217-300-0978; email [email protected].

The paper “Impact of dislocations on the thermal conductivity of gallium nitride studied by time-domain thermoreflectance” is available online and from the U. of I. News Bureau. DOI: 10.1063/1.5126970

Media Contact
Lois Yoksoulian
[email protected]
217-244-2788

Original Source

https://news.illinois.edu/view/6367/805135

Related Journal Article

http://dx.doi.org/10.1063/1.5126970

Tags: Electrical Engineering/ElectronicsMaterialsSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Dr. Alex Herrera

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

June 4, 2023
Ana Oaknin, Principal Investigator of the Vall d’Hebron Institute of Oncology’s (VHIO) Gynecological Malignancies Group

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

June 3, 2023

Carbon-based stimuli-responsive nanomaterials: classification and application

June 3, 2023

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

June 3, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In