• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New genetic engineering strategy makes human-made DNA invisible

Bioengineer by Bioengineer
May 28, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy of Peter Hoey.

Bacteria are everywhere. They live in the soil and water, on our skin and in our bodies. Some are pathogenic, meaning they cause disease or infection. To design effective treatments against pathogens, researchers need to know which specific genes are to blame for pathogenicity.

Scientists can identify pathogenic genes through genetic engineering. This involves adding human-made DNA into a bacterial cell. However, the problem is that bacteria have evolved complex defense systems to protect against foreign intruders–especially foreign DNA. Current genetic engineering approaches often disguise the human-made DNA as bacterial DNA to thwart these defenses, but the process requires highly specific modifications and is expensive and time-consuming.

In a paper published recently in the Proceedings of the National Academy of Sciences journal, Dr. Christopher Johnston and his colleagues at the Forsyth Institute describe a new technique to genetically engineer bacteria by making human-made DNA invisible to a bacterium’s defenses. In theory, the method can be applied to almost any type of bacteria.

Johnston is a researcher in the Vaccine and Infectious Disease Division at the Fred Hutchinson Cancer Research Center and lead author of the paper. He said that when a bacterial cell detects it has been penetrated by foreign DNA, it quickly destroys the trespasser. Bacteria live under constant threat of attack by a virus, so they have developed incredibly effective defenses against those threats.

The problem, Johnston explained, is that when scientists want to place human-made DNA into bacteria, they confront the exact same defense systems that protect bacteria against a virus.

To get past this barrier, scientists add specific modifications to disguise the human-made DNA and trick the bacterium into thinking the intruder is a part of its own DNA. This approach sometimes works but can take considerable time and resources.

Johnston’s strategy is different. Instead of adding a disguise to the human-made DNA, he removes a specific component of its genetic sequence called a motif. The bacterial defense system needs this motif to be present to recognize foreign DNA and mount an effective counter-attack. By removing the motif, the human-made DNA becomes essentially invisible to the bacterium’s defense system.

“Imagine a bacterium like an enemy submarine in a dry-dock, and a human-made genetic tool as your soldier that needs to get inside the submarine to carry out a specific task. The current approaches would be like disguising the spy as an enemy soldier, having them walk up to each gate, allowing the guards to check their credentials, and if all goes well, they’re in,” Johnston said. “Our approach is to make that soldier invisible and have them sneak straight through the gates, evading the guards entirely.”

This new method requires less time and fewer resources than current techniques. In the study, Johnston used Staphylococcus aureus bacteria as a model, but the underlying strategy he developed can be used to sneak past these major defense systems that exist in 80 to 90 percent of bacteria that are known today.

This new genetic engineering tool opens up the possibilities for research on bacteria that haven’t been well studied before. Since scientists have a limited amount of time and resources, they tend to work with bacteria that have already been broken into, Johnston explained. With this new tool, a major barrier to breaking into bacteria DNA has been solved, and researchers can use the method to engineer more clinically relevant bacteria.

“Bacteria are the drivers of our planet,” said Dr. Gary Borisy, a Senior Investigator at the Forsyth Institute and co-author of the paper. “The capacity to engineer bacteria has profound implications for medicine, for agriculture, for the chemical industry, and for the environment.”

###

This research was facilitated by an ‘NIH Director’s Transformative Research Award’ (R01OD024734) granted to the research team in 2017 through the National Institute of Dental and Craniofacial Research (NIDCR).

Media Contact
Alexandra Nicodemo
[email protected]

Original Source

https://www.forsyth.org/news/new-genetic-engineering-strategy-makes-human-made-dna-invisible

Tags: BacteriologyBiologyGeneticsMedicine/HealthMicrobiologyPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Smartphone Use Linked to Cognition in Elderly Japanese

November 8, 2025

STAiR18 Boosts Survival Rates in Multiple Myeloma

November 8, 2025

Pregnane X Receptor Prevents Male Bone Loss

November 8, 2025

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smartphone Use Linked to Cognition in Elderly Japanese

STAiR18 Boosts Survival Rates in Multiple Myeloma

Pregnane X Receptor Prevents Male Bone Loss

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.