• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New fundamental knowledge of the ‘abdominal brain’

Bioengineer by Bioengineer
December 7, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Magnus Bergström

Researchers at Karolinska Institutet have succeeded in mapping the neuron types comprising the enteric nervous system in the intestine of mice. The study, which is published today in the scientific journal Nature Neuroscience, also describes how the different neurons form during fetal development, a process that follows different principles to brain neurons.

Our approximately seven-metre long gastrointestinal (GI) tract has its own functionally distinct neurons. Since this enteric nervous system (ENS) operates autonomously, it is sometimes referred to as the “second” or “abdominal” brain. While the ENS controls muscle movement (peristalsis) in the gut and its fluid balance and blood flow, it also communicates with the immune system and microbiome. It therefore has a systemic affect on the body and is thought to be involved in a wide range of diseases. Some 30 percent of the population are estimated to live with permanent gastrointestinal complications.

Using single-cell sequencing, a method that enables scientists to functionally categorise and classify individual cells by determining which genes are active in them, researchers from Karolinska Institutet have now mapped the neurons that make up the mouse ENS. Roughly speaking, neuron function can be broken down into sensory, motor or interneuronal; now, the researchers have succeeded in describing subgroups of such nerve cells – in total, they have identified and classified twelve different kinds of ENS neuron, including subgroups of sensory neurons, some of which are activated by substances in the intestines and affect the immune system, while others are stimulated more mechanically.

The researchers also studied how GI tract neurons form during gestation, and found that the maturation process follows different principles to that of the central nervous system (CNS). In the CNS, the neurons mature from stem cells that are “pre-programmed” to form a certain type of neuron depending on their location, as different types of neuron are needed at different sites of the CNS. In the ENS, on the other hand, the same composition of neurons is needed along the entire length of the intestine. It is therefore unclear how the cells of the ENS “know” what to mature into. In this study, the researchers show that different neuronal types in the ENS are formed after the cells have matured into neurons and identify a transcription factor, Pbx3, that plays an important part in this transformational process.

“What we’ll be doing next is systematically activating the different neurons in the ENS in mice to study how the gastrointestinal functions are affected,” says the study’s last author Ulrika Marklund, researcher at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet. “This will enable us to produce detailed functional knowledge about the different neurons. So, in the future, we’ll be able to figure out the part played by the neurons in different intestinal diseases and identify targets for new drugs.”

She continues: “Our new findings on the formation of the ENS will also pave the way for better methods of ‘producing’ specific enteric neurons. It’s conceivable that we might eventually have stem-cell therapies for curing or alleviating different intestinal diseases that involve the re-creation of ENS neurons. But we’re not there yet.”

###

The study was supported by grants from numerous bodies, including the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Society of Medicine, the Ruth and Richard Julin Foundation, the Ollie and Elof Ericsson Foundation, the Magnus Bergvall Foundation, the Swedish Brain Foundation and the Åke Wiberg Foundation.

Publication: “Diversification of molecularly defined myenteric neuron classes revealed by single cell RNA-sequencing”, Khomgrit Morarach, Anastassia Mikhailova, Viktoria Knoflach, Fatima Memic, Rakesh Kumar, Wei Li, Patrik Ernfors and Ulrika Marklund, Nature Neuroscience, online Dec. 7, 2020, doi: 10.1038/s41593-020-00736-x

Media Contact
Press Office, Karolinska Institutet
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41593-020-00736-x

Tags: GastroenterologyInternal MedicineMedicine/HealthNeurochemistryPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Ultrafast Demagnetization: Advances in Magnetic Field Acceleration

Revolutionizing Ultrafast Demagnetization: Advances in Magnetic Field Acceleration

August 5, 2025
Scientists Investigate ‘Super Alcohol’ Offering Clues to Life Beyond Earth

Scientists Investigate ‘Super Alcohol’ Offering Clues to Life Beyond Earth

August 5, 2025

Solid Solvation Boosts All-Solid-State Organic Batteries

August 5, 2025

AI Accelerates Development of Stronger, More Durable Plastics

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multiplex Assay Detects HIV-1, HBV, and STRs

GABA Best Detects Early Parkinson’s Changes with RBD

Flavor and Bioactive Potential of Roasted Rice Bran Oil

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.