• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New fundamental knowledge of the ‘abdominal brain’

Bioengineer by Bioengineer
December 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Magnus Bergström

Researchers at Karolinska Institutet have succeeded in mapping the neuron types comprising the enteric nervous system in the intestine of mice. The study, which is published today in the scientific journal Nature Neuroscience, also describes how the different neurons form during fetal development, a process that follows different principles to brain neurons.

Our approximately seven-metre long gastrointestinal (GI) tract has its own functionally distinct neurons. Since this enteric nervous system (ENS) operates autonomously, it is sometimes referred to as the “second” or “abdominal” brain. While the ENS controls muscle movement (peristalsis) in the gut and its fluid balance and blood flow, it also communicates with the immune system and microbiome. It therefore has a systemic affect on the body and is thought to be involved in a wide range of diseases. Some 30 percent of the population are estimated to live with permanent gastrointestinal complications.

Using single-cell sequencing, a method that enables scientists to functionally categorise and classify individual cells by determining which genes are active in them, researchers from Karolinska Institutet have now mapped the neurons that make up the mouse ENS. Roughly speaking, neuron function can be broken down into sensory, motor or interneuronal; now, the researchers have succeeded in describing subgroups of such nerve cells – in total, they have identified and classified twelve different kinds of ENS neuron, including subgroups of sensory neurons, some of which are activated by substances in the intestines and affect the immune system, while others are stimulated more mechanically.

The researchers also studied how GI tract neurons form during gestation, and found that the maturation process follows different principles to that of the central nervous system (CNS). In the CNS, the neurons mature from stem cells that are “pre-programmed” to form a certain type of neuron depending on their location, as different types of neuron are needed at different sites of the CNS. In the ENS, on the other hand, the same composition of neurons is needed along the entire length of the intestine. It is therefore unclear how the cells of the ENS “know” what to mature into. In this study, the researchers show that different neuronal types in the ENS are formed after the cells have matured into neurons and identify a transcription factor, Pbx3, that plays an important part in this transformational process.

“What we’ll be doing next is systematically activating the different neurons in the ENS in mice to study how the gastrointestinal functions are affected,” says the study’s last author Ulrika Marklund, researcher at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet. “This will enable us to produce detailed functional knowledge about the different neurons. So, in the future, we’ll be able to figure out the part played by the neurons in different intestinal diseases and identify targets for new drugs.”

She continues: “Our new findings on the formation of the ENS will also pave the way for better methods of ‘producing’ specific enteric neurons. It’s conceivable that we might eventually have stem-cell therapies for curing or alleviating different intestinal diseases that involve the re-creation of ENS neurons. But we’re not there yet.”

###

The study was supported by grants from numerous bodies, including the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Society of Medicine, the Ruth and Richard Julin Foundation, the Ollie and Elof Ericsson Foundation, the Magnus Bergvall Foundation, the Swedish Brain Foundation and the Åke Wiberg Foundation.

Publication: “Diversification of molecularly defined myenteric neuron classes revealed by single cell RNA-sequencing”, Khomgrit Morarach, Anastassia Mikhailova, Viktoria Knoflach, Fatima Memic, Rakesh Kumar, Wei Li, Patrik Ernfors and Ulrika Marklund, Nature Neuroscience, online Dec. 7, 2020, doi: 10.1038/s41593-020-00736-x

Media Contact
Press Office, Karolinska Institutet
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41593-020-00736-x

Tags: GastroenterologyInternal MedicineMedicine/HealthNeurochemistryPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025
Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    99 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Method Developed to Generate Reference Microplastic Particles

Trans-ancestry Study Advances Bipolar Disorder Genetics

Carbonate Ions Drive Water Ordering in CO₂ Reduction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.