• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New findings shed light on selective therapeutics for IDH1-mutated glioma

Bioengineer by Bioengineer
April 13, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: DICP

Findings of a new study led by Prof. XU Guowang from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and Prof. YANG Chunzhang from the National Cancer Institute shed light on the selective therapeutics for IDH1-mutated glioma by targeting glutathione synthesis pathway.

The study was published in Proceedings of the National Academy of Sciences on Apr. 14.
Glioma is the most common type of primary brain tumors. Isocitrate dehydrogenase I (IDH1) mutation is a cancer-associated mutation highly prevalent in patients with glioma.

Although the oncogenic role of IDH1 mutation has been shown in several human solid tumors, selective therapeutics for IDH1-mutated malignancies remain unavailable.

The researchers demonstrated that glutathione de novo synthesis plays an essential role in IDH1-mutated cancer cells. Glutathione synthesis was controlled by a transcription factor NF-E2-related factor 2 (Nrf2), which governs the gene expressions for antioxidative pathway.

“Our in vitro findings suggest that the disruption of Nrf2-driven glutathione synthesis pathway establishes synergistic lethality with a neomorphic IDH1 mutation, ” said Prof. XU.

Triptolide, a diterpenoid epoxide from Tripterygium wilfordii, served as a potent Nrf2 inhibitor. “Triptolide exhibited selective cytotoxicity to patient-derived IDH1-mutated glioma cells in vitro and in vivo. Furthermore, we studied the anticancer mechanism of triptolide.” YANG said.

Mechanistically, triptolide compromised the expression of GCLC, GCLM, and SLC7A11, which disrupted glutathione metabolism and established synthetic lethality with reactive oxygen species (ROS) derived from IDH1 mutant neomorphic activity.

The study highlights triptolide as a valuable therapeutic approach for IDH1-mutated malignancies by targeting the Nrf2-driven glutathione synthesis pathway.

###

Media Contact
CHEN Si
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1913633117

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Linking Reasoning Skills and Eating Disorders: An Insight

January 15, 2026

Workplace Violence Against Nurses: Causes and Prevention Strategies

January 15, 2026

Low Threshold Care Improves Outcomes for Opioid Users

January 15, 2026

Game-Based Cognitive Assessment for Mild Cognitive Impairment

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13
iv>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking Reasoning Skills and Eating Disorders: An Insight

Workplace Violence Against Nurses: Causes and Prevention Strategies

KLHL6 Ubiquitin Ligase Fuels CD8+ T Cell Resistance

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.