• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New findings on the largest natural sulfur source in the atmosphere

Bioengineer by Bioengineer
November 18, 2019
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Laboratory results question current knowledge on the degradation of dimethyl sulfide within the sulfur cycle

IMAGE

Credit: Torsten Berndt, TROPOS


Leipzig. An international research team was able to experimentally show in the laboratory a completely new reaction path for the largest natural sulfur source in the atmosphere. The team from the Leibniz Institute for Tropospheric Research (TROPOS), the University of Innsbruck and the University of Oulu are now reporting in the Journal of Physical Chemistry Letters on the new degradation mechanism for dimethyl sulfide (DMS), which is released mainly by the oceans. The new findings show that important steps in the Earth’s sulfur cycle have not yet been properly understood, as they call into question the previously assumed formation pathways for sulfur dioxide (SO2), methanesulfonic acid (MSA) and carbonyl sulfide (OCS) based on DMS degradation, which strongly influence the Earth’s climate through the formation of natural particles and clouds.

In the laboratory studies, a free-jet flow system was used at TROPOS in Leipzig, which allows the investigation of oxidation reactions under atmospheric conditions without disturbing wall effects. The products of the reactions were measured with state-of-the-art mass spectrometers using different ionization methods. The investigations on the degradation process of dimethyl sulfide (DMS; CH3SCH3) showed that this predominantly proceeds by a two-step radical isomerization process, in which HOOCH2SCHO is formed as a stable intermediate product as well as hydroxyl radicals. There has been theoretical speculation about this reaction pathway for four years now, but the German-Austrian-Finnish team has only now been able to prove it. “The interaction of optimal reaction conditions and highly sensitive detection methods allows us to look almost directly into a reaction system,” reports Dr. Torsten Berndt from TROPOS, who is in charge of the investigations. The new reaction pathway is significantly faster than the traditional bimolecular radical reactions with nitrogen monoxide (NO), hydroperoxy (HO2) and peroxy radicals (RO2). “Further investigations on the degradation of the intermediate HOOCH2SCHO will hopefully give us clarity about the formation channels, especially of sulfur dioxide (SO2) and carbonyl sulfide (OCS),” Berndt continued about the upcoming investigations.

Dimethyl sulfide (DMS) is a sulfur-containing organic gas that occurs almost everywhere: the degradation product of bacteria, for example, is part of human bad breath. On the other hand, the large quantities of DMS that are produced and outgassed during decomposition processes in the ocean are important for the climate: Estimated 10 to 35 million metric tons from the seawater are released into the atmosphere every year. DMS is thus the largest natural source of sulfur for the atmosphere. As a result of its reaction with hydroxyl radicals, sulfuric acid (H2SO4) is formed starting from SO2 and methanesulfonic acid (MSA), which play a major role in the formation of natural particles (aerosols) and clouds over the oceans. Carbonyl sulfide (OCS) is also important, as its low reactivity in the atmosphere allows it to be mixed into the stratosphere, where it contributes to the formation of sulfuric acid aerosols and thus to the cooling of the Earth’s atmosphere.

The new findings about the degradation pathways of DMS help to improve the knowledge about the formation of natural aerosols. The contribution of aerosols and the resulting clouds is still the greatest uncertainty in climate models. In contrast to greenhouse gases such as carbon dioxide, cloud formation processes are much more complex and difficult to model.

###

Publication:

T. Berndt, W. Scholz, B. Mentler, L. Fischer, E. H. Hoffmann, A. Tilgner, N. Hyttinen, N. L. Prisle, A. Hansel, and H. Herrmann (2019): Fast Peroxy Radical Isomerization and OH Recycling in the Reaction of OH Radicals with Dimethyl Sulfide. J. Phys. Chem. Lett. 2019, 10, 21, 6478-6483. DOI: 10.1021/acs.jpclett.9b02567

https://doi.org/10.1021/acs.jpclett.9b02567

The study was by the European Research Council (ERC), the European Union Framework Programme for Research and Innovation (Horizon-2020 project SURFACE (717022) and the MSCA programme (764991)) and the Academy of Finland (308238 & 31475).

Contacts:

Dr. Torsten Berndt

Scientific staff, Atmospheric Chemistry Department at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Phone +49-341-2717-7032

https://www.tropos.de/en/institute/about-us/employees/torsten-berndt

and

Prof. Hartmut Herrmann

Head of the Atmospheric Chemistry Department at the Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Phone: +49-341-2717-7024

https://www.tropos.de/en/institute/about-us/employees/hartmut-herrmann

or

Tilo Arnhold

Public Relations at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Phone: +49-341-2717-7189

https://www.tropos.de/en/current-issues/press-releases

Links:

Blog in Nature Chemistry Community
https://chemistrycommunity.nature.com/users/208292-torsten-berndt/posts/44523-deeper-insight-into-elementary-processes-of-atmospheric-gas-phase-reactions

Free-jet flow system at TROPOS:
https://www.tropos.de/en/research/projects-infrastructures-technology/technology-at-tropos/aerosol-research-facilities/free-jet-flow-system

Laboratory experiments on tropospheric multiphase processes at TROPOS:
https://www.tropos.de/en/research/aerosol-cloud-interaction/process-studies-on-small-spatial-and-temporal-scales/chemical-multiphase-processes/laboratory-experiments-on-tropospheric-multiphase-processes/overview

Media Contact
Tilo Arnhold
[email protected]
49-341-271-77189

Original Source

https://www.tropos.de/en/current-issues/press-releases/details/neue-erkenntnisse-zur-groessten-natuerlichen-schwefelquelle-in-der-atmosphaere

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.9b02567

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangeClimate SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Inside the New World Arenavirus Spike Structure

Inside the New World Arenavirus Spike Structure

August 8, 2025
blank

Beneficial Soil Bacteria: Impact on Plant Growth

August 8, 2025

Discovering a Phage to Combat Drug-Resistant Bacteria

August 8, 2025

Deletion Mutants Reveal DivIVA Gene Impact on Cell Length

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    128 shares
    Share 51 Tweet 32
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analyzing Public Data Uncovers Air Quality Impacts of the 2025 Los Angeles Wildfires

Creating Strained Para-Cyclophanes via [5,5]-Sigmatropic Shift

MUC1-C Links APOBEC3 and Retrovirus Activation in NSCLC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.