• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New findings could lead to improved vaccinations against sexually transmitted infections

Bioengineer by Bioengineer
May 19, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a study published today in the Nature Communications, researchers from King’s College London have shown how skin vaccination can generate protective CD8 T-cells that are recruited to the genital tissues and could be used as a vaccination strategy for sexually transmitted infections (STIs).

One of the challenges in developing vaccines for STIs, such as HIV or herpes simplex virus, is understanding how to attract specialised immune cells, called CD8 T-cells, to take up residence in the part of the body where the virus first enters. These cells need to be in place, armed and ready to provide an immediate protective immune defence, rather than waiting for immune cells in the blood to enter the tissues which takes time.

Before this study, it was thought that vaccines ideally needed to be delivered directly to the body surface (e.g. female genital tissue) where the infection might start, so that the immune system can generate these CD8 T-cells, travel back to the vaccination site and eliminate any future virus that is encountered. However, delivering vaccines directly to the female genital tissue is neither patient friendly nor efficient.

Now the team from King’s have found that their vaccination strategy marshals a platoon of immune cells, called innate lymphoid cells (ILC1) and monocytes, in the genital tissues to work together and release chemicals (chemokines) to send out a call to the CD8 T-cells generated by the vaccine to troop into the genital tissue.

This research builds on the team’s earlier work to develop skin vaccination techniques using a dissolvable ‘microneedle’ vaccine patch that once placed against the skin dissolves and releases the vaccine without requiring a hypodermic needle injection and generates immune responses.

Lead author, Professor Linda Klavinskis from King’s College London said: “This study highlights how specialised groups of ‘innate’ immune cells in distant tissues can be harnessed to attract protective CD8 T-cells, arming the body’s frontline tissues from infection.

“We now need to confirm these results with other types of vaccines from the one used in the study to see if a common pathway is triggered by skin vaccination. If proven, this could have a significant impact in improving the effectiveness of vaccines against sexually transmitted infections.”

###

Media Contact
Tanya Wood
[email protected]

Tags: Clinical TrialsFertilityGynecologyHealth Care Systems/ServicesHealth ProfessionalsInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share14Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Role Identity Affects Nurse Practitioners’ Cultural Competence

Parental KMO Genotype Influences Offspring Behavior Differently by Sex

Systemic Immune-Inflammation Index Predicts Heart Failure Risks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.