• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New drug targets for BRCA-driven cancer uncovered

Bioengineer by Bioengineer
January 24, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Preclinical study yields previously unreported, potent and generalizable hits representing potential drug targets for hereditary breast, ovarian cancer

BRCA1 and BRCA2 (“BReast CAncer genes”) are critical tumor suppressor genes–women carrying a mutation in one of these genes have up to an 80 percent risk of developing breast cancer and a 50 percent risk of developing ovarian cancer. Cancer drugs known as Parp inhibitors have recently been approved for treating patients with BRCA-driven metastatic breast cancer or recurrent ovarian cancer, but many patients’ cancers become resistant to the drugs. New drug targets for treating BRCA-driven cancer are urgently needed. Investigators from Brigham and Women’s Hospital have conducted a study to systematically identify new genetic targets on which BRCA2 cancer cells are more dependent than healthy cells and have tested these targets in the lab. Such “synthetic lethals” point to potential avenues for drug development. The team’s findings are published in Molecular Cell.

“I’ve been studying DNA damage response for many years and have been developing tools to look for vulnerabilities in cancer cells,” said corresponding author Stephen Elledge, PhD, the Gregor Mendel Professor of Genetics and of Medicine at Harvard Medical School and Brigham and Women’s Hospital. “While Parp inhibitors are important, many people are developing resistance to them. We thought we might be able to find other pathways through which we could effectively kill cancer cells without harming normal cells.”

To search for new targets, lead author Kristen Mengwasser, an MD-PhD student at Harvard Medical School, Elledge and colleagues, used CRISPR and short-hairpin RNAs (shRNAs) to test 380 genes with a known or suspected role in DNA-damage response. The team carried out its tests in a pair of colon cancer cell lines–one with a BRCA2 mutation and one without–and in a pair of ovarian cancer cell lines. These screens and follow-up experiments helped the researchers narrow in on the two most promising targets: APEX2 and FEN1. Neither gene has been reported previously as a potential target for BRCA-driven cancer.

The team’s strongest finding was the flap endonuclease FEN1. When working appropriately, this enzyme plays several essential roles in DNA repair events, including removing “flaps” (overhangs of single-stranded DNA) during DNA replication. Normal cells can survive without it, but in cancer cells in which both copies of BRCA2 have been compromised, the loss of FEN1 results in cell death. The team found similar results for APEX2, which encodes an enzyme involved in another important DNA repair pathway. The team tested an existing FEN1 inhibitor on cells in the lab and found that it preferentially killed cancer cells with the BRCA mutation.

Elledge notes that drugs targeting FEN1 and APEX2 are currently in production at small start-up companies.

“It will be interesting to see whether drugs targeting these genes could complement Parp inhibitors and address the issue of drug resistance,” said Elledge. “This work is a good example of how studies rooted in genetics and basic biology can result in therapeutic implications that could be quite profound.”

###

This work was supported by a grant from the National Cancer Institute and Department of Defense Award W81XWH-12-1-0362.

Media Contact
Haley Bridger
[email protected]
617-525-6383
http://dx.doi.org/10.1016/j.molcel.2018.12.008

Tags: Breast CancercancerGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Final Clinical Trial Results Published for Advanced Kidney Cancer Therapy

Final Clinical Trial Results Published for Advanced Kidney Cancer Therapy

August 1, 2025
New Study Uncovers Role of Mysterious Variants in Colon Cancer-Linked Gene

New Study Uncovers Role of Mysterious Variants in Colon Cancer-Linked Gene

August 1, 2025

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

July 31, 2025

CCNY Researchers Identify Possible Chemotherapy-Linked Cognitive Changes in Cancer Survivors

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.