• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New dispersion method to effectively kill biofilm bacteria could improve wound care

Bioengineer by Bioengineer
April 24, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BINGHAMTON, N.Y. – Researchers at Binghamton University, State University of New York have developed a method to treat bacterial infections which could result in better wound care.

Biofilms are a structured community of bacterial cells that are adherent to inert or living surfaces. What makes these structures special is that living within these biofilm communities makes its resident bacteria resistant to antibiotics. A research team led by Karin Sauer, professor of biological sciences at Binghamton University, demonstrated that two important human pathogens, P. aeruginosa and S. aureus, need pyruvate to form these structured biofilm communities that are inherently resistant to antibiotics. In turn, the research team demonstrated that removal of pyruvate induces a physiological change in biofilm bacteria that has two consequences: 1) it causes them to disassemble the biofilm structure in a process referred to as biofilm dispersion; and 2) it renders biofilm bacteria more susceptible to antibiotics. 

“Our in vitro laboratory findings translated to animals and chronic wound infections, as exposing infected burn wounds to pyruvate depleting conditions not only reduced the bacterial burden present in these wounds, but also enabled the effective killing of biofilm cells by the antibiotic tobramycin,” Sauer said.

Biofilm infections are almost impossible to treat by conventional antibiotic therapy. In that regard, these findings are noteworthy, Sauer said. Inducing biofilm dispersion by depleting pyruvate is an add-on therapy that maximizes the effectiveness of conventional antibiotics in killing biofilms. That this novel therapeutic strategy works was apparent as the combination treatment (inducing biofilm dispersion in addition to conventional antibiotic therapy) was significantly more effective than treatment with antibiotics alone or even with the antimicrobial cream silver sulfadiazine, which is considered the gold standard in wound care.

“What this means for wound care is that pyruvate depletion can improve the anti-biofilm activity of conventional antibiotic therapy (which by itself is not working so well), to better treat infected wounds and, ultimately, improve wound healing,” Sauer said. “Given that pyruvate depletion not only disperses already established biofilms, but also prevents the formation of antibiotic-resistant biofilms by the two principal pathogens associated with wound infections, pyruvate depletion can also be used to prevent biofilm-related wound infections.”

Sauer said that her lab and collaborator Amber Doiron, assistant professor of biomedical engineering at the University of Vermont, are planning on developing therapies based on pyruvate-depleting conditions.

###

The paper, “Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo,” was published in Nature’s Scientific Reports.

Media Contact
John Brhel
[email protected]
http://dx.doi.org/10.1038/s41598-019-40378-z

Tags: BacteriologyBiochemistryBiologyBiomedical/Environmental/Chemical EngineeringInfectious/Emerging DiseasesMedicine/HealthMicrobiologyTrauma/Injury
Share13Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

C-Terminal Truncations Impact Alpha-Synuclein Pathology

Direct PZT Printing on Glass Enables Surface Haptics

Unveiling Genomic Insights for Glycemic Trait Drug Repurposing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.