• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New broadly applicable tool provides insight into fungicide resistance

Bioengineer by Bioengineer
July 6, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jingyu Peng, Hyunkyu Sang, Tyre J. Proffer, Jacqueline Gleason, Cory A. Outwater, Geunhwa Jung, and George W. Sundin

Succinate dehydrogenase inhibitors (SDHIs) are a class of fungicides widely used to control many fungal diseases of crops. The relationship between SDHIs and fungi can be compared to finding the right key for the right lock. However, fungi are adaptable and develop resistance to fungicides often by changing the lock so that the SDHI is no longer able to open the door. Because of this adaptability, it is important to understand the biological mechanisms of fungicide resistance.

A recent collaboration between scientists in Michigan and Massachusetts as well as South Korea resulted in the development of a novel and broadly applicable molecular assay that used a model fungus to investigate how plant fungal pathogens circumvent the bioactivity of SDHIs. In other words, to study the interactions between different locks and keys. Through this analysis, they were able to successfully validate known mechanisms of fungicide resistance in several agriculturally important fungal pathogens.

Of note, they were also able to provide insights into the question: “Can newer SDHI fungicides overcome existing resistance mutations?” Their answer? Not necessarily! “We showed that the efficacy of fungicides developed in recent years will be heavily dependent on the history of fungicide application in each particular field site,” said Jingyu Peng, one of the researchers involved with this study.

Their assay and resulting study are unique compared to other studies that focus on a specific fungus. “The molecular assay we developed enables a holistic interrogation of fungicide resistance mechanisms in various pathogenic fungi,” Peng explained. “We hope our study will have a positive impact on future fungicide design as our approach is very scalable and can be implemented as a part of the resistance risk assessment protocol for future industrial fungicide discovery.”

###

For a more comprehensive understanding of fungicide resistance mechanisms and the details behind this research, read “A Method for the Examination of SDHI Fungicide Resistance Mechanisms in Phytopathogenic Fungi Using a Heterologous Expression System in Sclerotinia sclerotiorum” published in mid-April in Phytopathology Journal.

Media Contact
Ashley Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-09-20-0421-R

Tags: Agricultural Production/EconomicsAgricultureBiologyBiotechnologyCell BiologyChemical/Biological WeaponsFood/Food ScienceMolecular BiologyMycologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.