• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, November 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New biobased recyclable polyesters exhibiting excellent tensile properties beyond polyethylene and polypropylene

Bioengineer by Bioengineer
October 13, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research group of Professor Kotohiro Nomura, Tokyo Metropolitan University, in cooperation with the research group of Director Hiroshi Hirano, Osaka Research Institute of Industrial Science and Technology, has developed biobased polyesters from inedible plant resources, which can be easily chemical recyclable and exhibit promising mechanical properties in film than commodity plastics.

Promising Mechanical Properties in the Present Biobased Polyesters Beyond Polyethylene

Credit: Japan Science and Technology Agency

The research group of Professor Kotohiro Nomura, Tokyo Metropolitan University, in cooperation with the research group of Director Hiroshi Hirano, Osaka Research Institute of Industrial Science and Technology, has developed biobased polyesters from inedible plant resources, which can be easily chemical recyclable and exhibit promising mechanical properties in film than commodity plastics.

The development of high-performance sustainable, recyclable plastics is an important subject to realize circular economy. Biobased polyesters made from plant resources are expected to become promising alternative materials to polymers such as polyethylene and polypropylene produced from petroleum. However, there have been few examples of the development of high-performance materials that exceed required mechanical properties such as tensile strength and elongation at break.

Synthesis methods for high molecular weight (long chain) polymers had been a pending issue in conventional polycondensation methods. To solve this issue, the research group has developed an olefin metathesis polymerization method* using a high-performance molybdenum catalyst, focusing on polyesters derived from inedible plant resources, glucose and so forth. In general, there is an antinomic relationship between tensile strength and elongation at break in polymer film, as well as increase in molecular weight and elongation at break. However, the present polymer film demonstrates that the tensile properties (strength and elongation at break) of the polymer film increased with the molecular weight, exhibiting superior properties beyond conventional plastics.

The present result is the first success in developing the biobased polyester materials that can be decomposed/recycled and has excellent tensile strength and elongation at break than commodity plastics. The film properties can be further improved by combination with naturally derived fibers such as cellulose nanofibers. Therefore, the material is expected to be a large breakthrough in the research and development of plastic materials aiming at the circular economy.

* Olefin metathesis polymerization method: “olefin” is a general term for hydrocarbons with one carbon-carbon double bond. The word “metathesis” means “substitution”. Therefore, the recombination reaction of substituents on the double bond of an olefin is called the olefin metathesis reaction. For example, there is a reaction where a carbon-carbon double bond in an olefin is replaced with a catalytic metal-carbon double bond (catalytically active species) through the reaction using a catalytic metal such as ruthenium or molybdenum. The polymer synthesis method using such reaction is called the olefin metathesis polymerization method. The present method is a polycondensation synthesizing polymer through producing ethylene as by-product (acyclic diene metathesis polymerization).

The research was conducted under the JST CREST program, Research Area “Precise Material Science for Degradation and Stability, ” Research Theme “Development of Bio-Based Advanced Polymers and their Depolymerization, Chemical Recycle.”



Journal

ACS Macro Letters

DOI

10.1021/acsmacrolett.3c00481

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthesis of High Molecular Weight Biobased Aliphatic Polyesters Exhibiting Tensile Properties Beyond Polyethylene

Article Publication Date

4-Oct-2023

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

Illustration of a droplet

Protected droplets a new transport route for medicines

November 30, 2023
Composition panels

Rice husk and recycled newspaper may be the eco-friendly insulation material of the future

November 30, 2023

Applications of macrocyclic molecules in cancer therapy: Target cancer development or overcome drug resistance

November 30, 2023

What is Cellular Agriculture? The world population is expected to reach 9.7 billion by 2050. With it will come a doubling in the amount of animal protein we consume.

November 30, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    77 shares
    Share 31 Tweet 19
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Protected droplets a new transport route for medicines

Rice husk and recycled newspaper may be the eco-friendly insulation material of the future

Applications of macrocyclic molecules in cancer therapy: Target cancer development or overcome drug resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In