• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New approach uses magnetic beads to treat preeclampsia

Bioengineer by Bioengineer
May 13, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hypertension Journal Report

DALLAS, May 13, 2019 – Preliminary laboratory tests show that functionalized magnetic beads successfully reduced blood levels of a harmful molecule that is elevated during preeclampsia, according to new research in the American Heart Association’s journal Hypertension.

Preeclampsia is a complication of pregnancy characterized by hypertension and kidney dysfunction that affects an estimated 6% – 8% of women in the U.S. who give birth each year. Preeclampsia is responsible of severe complications for the mother (seizures, stroke, renal failure, liver dysfunction) and the infant (low birth weight, preterm delivery, stillbirth). The condition also increases a woman’s risk for cardiovascular disease later in life (stroke and high blood pressure). Currently, there’s no cure for preeclampsia, and only childbirth can alleviate symptoms.

Researchers focused on a molecule, called sFlt-1, which is released by the placenta into the woman’s bloodstream and rises to high levels during preeclampsia. High levels of sFlt-1 are responsible for blood vessel wall dysfunction, contributing to high blood pressure and for trapping two other important molecules that enhance blood vessel wall function called VEGF and PIGF.

Using blood from women with preeclampsia, researchers conducted laboratory tests to see if magnetic beads could essentially drag sFlt-1 out of circulation, therefore freeing up levels of VEGF and PIGF. They found that magnetic beads reduced sFlt-1 by 40% and freed up to two times more PIGF, reducing the sFlt-1/PlGF ratio by 63 percent.

“This was a proof of concept study and our approach aims to restore physiologic levels of angiogenic factors,” said lead study author Vassilis Tsatsaris, M.D., Ph.D., a professor of obstetrics and gynecology at Cochin Hospital in Paris. “The reduction of sFlt-1 and the release of angiogenic factors is very significant and promising.”

Angiogenic factors is any of a group of substances present in the circulation – most of which are polypeptides (i.e., angiogenin, fibroblast growth factor, transforming growth factors and some lipids) which help form blood vessels.

Based on the success of these early findings, Tsatsaris and his colleagues would like to expand their study and repeat these experiments to see if this approach can control preeclampsia and prolong pregnancy while reducing the risks of prematurity for the baby.

###

Co-authors are Laura Trapiella-Alfonso, Ph.D.; Lucile Alexandre, Ph.D.; Camille Fraichard, Ph.D.; Kelly Pons, M.Sc.; Simon Dumas, Ph.D.; Lucie Huart, M.Sc.; Jean-François Gaucherd, Ph.D.; Marylise Hebert-Schuster, Pharm.D.; Jean Guibourdenche, Pharm.D., Ph.D.; Thierry Fournier, Ph.D.; Michel Vidal, M.D, Ph.D.; Isabelle Broutin, Ph.D.; Laurence Lecomte-Racelt, P.M.; Laurent Malaquin, Ph.D.; Stéphanie Descroix, Ph.D.; Nathalie Gagey-Eilstein, Ph.D.; Edouard LeCarpentier, M.D., Ph.D. Author disclosures are on the manuscript.

French National Agency for Research funded the study.

Additional Resources:

Available multimedia located on the right column of the release link: https://newsroom.heart.org/news/new-approach-uses-magnetic-beads-to-treat-preeclampsia?preview=369a80b23cbbdc5fb5c4a238018af7d6

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations and health insurance providers are available at https://www.heart.org/en/about-us/aha-financial-information.

About the American Heart Association

The American Heart Association is a leading force for a world of longer, healthier lives. With nearly a century of lifesaving work, the Dallas-based association is dedicated to ensuring equitable health for all. We are a trustworthy source empowering people to improve their heart health, brain health and well-being. We collaborate with numerous organizations and millions of volunteers to fund innovative research, advocate for stronger public health policies, and share lifesaving resources and information. Connect with us on heart.org, Facebook, Twitter or by calling 1-800-AHA-USA1.

Media Contact
Carrie Thacker
[email protected]

Related Journal Article

https://newsroom.heart.org/news/new-approach-uses-magnetic-beads-to-treat-preeclampsia?preview=369a80b23cbbdc5fb5c4a238018af7d6
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12380

Tags: CardiologyMedicine/HealthStroke
Share13Tweet7Share2ShareShareShare1

Related Posts

New Study Reveals How Dangerous E. coli Strain Disables Gut Defenses to Propel Infection

October 22, 2025
$6.2M Grant Fuels Launch of UC San Diego REACH Center for Whole Person Translational Science

$6.2M Grant Fuels Launch of UC San Diego REACH Center for Whole Person Translational Science

October 22, 2025

Linking Adverse Pregnancy Outcomes to Increased Long-Term Risk of Atrial Fibrillation

October 22, 2025

Cytochrome bc1 Inhibitors: Future Tuberculosis Treatments

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    305 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    144 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Maize Disease Detection Using CNNs and Transformers

Refining Essential Oil Extraction: ECU Innovator Harnesses Pressure for Perfection

Research Reveals COVID-19 mRNA Vaccine Triggers Immune Response Against Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.