• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New angle of attack drives cellular HIV-reservoirs to self-destruction

Bioengineer by Bioengineer
March 25, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

While current therapies for HIV can successfully manage active infection, the virus can survive in tissue reservoirs, including macrophage cells, and remain a persistent problem. Now, Dr. David Russell, William Kaplan Professor of Infection Biology at Cornell University College of Veterinary Medicine, and his research team have pinpointed a novel angle of attack that could selectively eradicate these viral reservoir cells while leaving healthy cells untouched.

In their study published on March 25th in the journal PNAS, Russell’s team, lead by first author and postdoctoral fellow Dr. Saikat Boliar, describe how a genetic regulator called SAF helps HIV-infected macrophages avoid cell death. After blocking SAF in HIV-infected cells, the researchers found that these reservoir cells then self-destructed. “We were all surprised by the specificity of the cell death,” says Russell. “Only infected cells die while bystander cells, exposed to the same treatment at the same dose, showed no death at all.”

While macrophages, immune cells that consume foreign entities in the body, are helpful in fighting off certain microbes, they provide the perfect foxhole for HIV. Some researchers believe these infected macrophages are the reservoirs for persistent HIV infection. “Current HIV drugs work really well on active infection, but it is the tissue reservoirs that are the problem,” Russell explains. “These sites of persistent virus are resistant to all current therapies.”

Russell, Boliar, and their colleagues wanted to investigate what cellular mechanisms were at play that helped keep infected macrophages alive, and turned their attention to long non-coding RNAs (lncRNAs) — genetic coding elements that turn genes up or down, but do not translate directly into proteins themselves. “We were interested in long-noncoding RNAs because they are known ‘master regulators’ of cell pathways, and had not really been looked at systematically in HIV infection,” Russell explains.

The team screened a panel of 90 well-characterized lncRNAs in three distinct populations of human macrophages: healthy cells, HIV-infected cells, and ‘bystander’ cells — those that had been exposed to HIV, but not infected.

The investigators found that one lncRNA, called SAF, was significantly up-regulated in the HIV-infected macrophages. Previous studies had found that SAF prevented apoptosis, or self-destruction, in cells. Russell and his team suspected SAF was protecting HIV-infected macrophages from dying.

To prove this theory, the team blocked SAF’s action using another non-coding RNA called small interfering RNA (siRNA), which effectively degrade targeted RNAs such as SAF. The researchers silenced SAF in the healthy, infected, and bystander macrophage populations; the HIV-infected cells suddenly self-destructed, while the healthy and bystander cells remained unscathed.

“This showed us that when cells are infected with HIV, the virus alters the long non-coding RNAs’ expression in that cell,” says Russell. This would explain why bystander cells that are exposed to the HIV virions, but not actually infected by them, do not have the same response.

This discovery taps into a novel angle in curing HIV: selectively destroying persistently infected cells–and the Russell team is eager to exploit it for potential therapies.

“We plan to do a drug screen for compounds that drive HIV-infected cells into programmed cell death,” says Russell. The team will start by looking for SAF inhibitors, but also will look for other molecules that effectively eradicate reservoir cells through other mechanisms.

###

Media Contact
Melissa Osgood
[email protected]

Tags: AIDS/HIVBiologyCell BiologyDisease in the Developing WorldGeneticsInfectious/Emerging DiseasesMedicine/HealthMolecular BiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hybrid Approach Detects Ballistocardiogram Motion Artifacts

Azelaic Acid Blocks Leukemia Cell Skin Trafficking

How Dopamine Influences Confidence and Choice Variations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.