• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New affinity purification technique for therapeutic proteins

Bioengineer by Bioengineer
July 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kimoon Kim (POSTECH)

Professor Kimoon Kim’s research group at POSTECH has developed a highly pure and efficient technique for purifying antiviral and anti-cancer protein therapeutics using molecular affinity interaction.

With the COVID-19 showing no signs of slowing down around the world, the development of a vaccine seems to be the sole solution to end the pandemic. However, even if a vaccine is developed, the task of manufacturing well-refined drug molecules, which treat a number of other comorbid conditions, remains elusive. Besides COVID-19, there are growing concerns for developing a source treatment protocol to deal with new infectious diseases that may find their way into our lives.

A joint research team made up of Professor Kimoon Kim (POSTECH University Professor of Department of Chemistry at POSTECH, Director of Center for Self-assembly and Complexity (CSC) and of Institute for Basic Science (IBS)) and Dr. Kyeng Min Park (Research fellow and Group leader at CSC and IBS) have together developed a source technology using the affinity interaction of cucurbiturils to purify recombinant therapeutic proteins used as antiviral drugs or as anti-cancer agents with high efficiency and high purity. The research findings were published online in Nature Biomedical Engineering (DOI: 10.1038/s41551-020-0589-7) on July 20.

Recombinant DNA technology uses biotechnological techniques to insert genes from one organism into another and activate them to change its genetic trait. Using this method, a vaccine can be developed to exterminate pathogenic microorganisms or weaken their toxicity by expressing all or part of the proteins. For the mass-production of the hormones, antibodies or vaccines made from this process, the proteins must be purified.

Until now, therapeutic protein purification technology has used protein-based affinity columns. However, they face financial and technological difficulties as the materials are costly, their storage or reuse is not efficient and their suitability and efficiency depends on the properties of each therapeutic protein.

The researchers succeeded in purifying various types of therapeutic proteins expressed in cells by harnessing the molecular affinity interaction using a synthetic host molecule cucurbit[7]uril (or CB[7] in short), which was first discovered by the same research group. The molecular affinity principle, a key element in the development of the purification technique, is dependent on the high-affinity and controllable host-guest interaction between CB[7] and guests such as adamantane.

The new purification technology has succeeded in purifying a monoclonal antibody drug, Herceptin (breast cancer treatment), as well as much smaller Interferon alpha (leukemia treatment) with high efficiency and high purity.

In particular, by applying small and stable synthetic molecules, the team succeeded in securing the manufacturability, sterilization, and recyclability of purified materials in a stable manner as well as increasing the purity and productivity of purified protein therapeutics. In addition, introducing adamantine (or AdA in short) to therapeutic proteins through genetic regulation and enzyme treatment can purify them regardless of their size or type.

This technique can be applied to most recombinant therapeutic proteins, including antibodies or fusion proteins that effectively prevent or treat fatal diseases such as viral infections or cancer, and is highly efficient and reusable. Furthermore, it is applicable to a wide variety of therapeutic proteins used in the development of vaccines or treatments which will speed up their production.

The research was conducted with the support from the Institute of Basic Science.

###

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://www.postech.ac.kr/eng/new-affinity-purification-technique-for-therapeutic-proteins/#post-21113

Related Journal Article

http://dx.doi.org/10.1038/s41551-020-0589-7

Tags: BiochemistryBiomechanics/BiophysicscancerChemistry/Physics/Materials SciencesMedicine/HealthPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

Comprehensive Review Explores MDMA’s Role in PTSD Treatment and Emerging Psychiatric Applications

October 14, 2025

Predicting AML Chemosensitivity with ARTN and CCL23

October 14, 2025

Immunity to Measles Reaches 90% in British Columbia’s Lower Mainland

October 14, 2025

2024 NASEM Long COVID Definition: Research Foundation

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psychedelics Unveil Innovative Therapeutic Approaches for Stress-Related Psychiatric Disorders

New Brain Cell Discoveries Revolutionize Understanding of Psychiatric Disorders

Comprehensive Review Explores MDMA’s Role in PTSD Treatment and Emerging Psychiatric Applications

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.