• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, August 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Nature's sweets

Bioengineer by Bioengineer
December 17, 2018
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Borrowing a natural recipe for sugar synthesis

IMAGE

Credit: Photo by rawpixel on Unsplash


Today, sugar has a villainous reputation. And while too much of the sweet stuff should be avoided, all living things need sugar to survive. “The biological universe is coated with sugars,” said Samuel M. Levi and Qiuhan Li, graduate students in Harvard University’s Department of Chemistry and Chemical Biology. “Cells, bacteria, viruses and other organisms use sugars as a means of communication, recognition, and even defense.” Nature literally runs on sugars.

Yet, like overzealous nutritionists, synthetic chemists usually avoid sugars. Nature, an expert chemist, can shift the sweets from one molecule to another with enviable finesse. But in the lab, scientists struggle to attach just one sugar molecule to another chemical unit, a process known as glycosylation. Researchers rely on this method to study biological processes and to create such important substances as pharmaceuticals and vaccines.

According to Levi and Li, “many methods to perform chemical glycosylation exist, [but] their use remains reserved for experts in carbohydrate chemistry.” So, to extend this expertise to non-specialists, the team looked to nature for guidance.

On its own, nature carries out glycosylation, and also makes DNA, RNA, proteins and other polymers with the help of phosphates. To induce glycosylations in the lab, most synthetic chemists choose faster-to-react halides and sulfinates over phosphates. So, while nature’s choice may be slow to react, they’re far more stable than the lab go-tos. What’s more, enzymes–the tiny sparks that ignite a reaction–can easily recognize phosphate-monomers, speeding the path to reaction and product.

But, until recently, researchers have failed to capitalize on these natural advantages. If an ingredient is slow to react, chemists give it a shove, often in the form of heat, energy, or a well-designed catalyst. Phosphates need a shove; and, without a suitable catalyst, scientists usually use high, volatile temperatures. Outside the lab, natural reactions use phosphates without the fiery fuss, but like a proud chef, nature guards her chemical secrets well. Now, in a paper published in the Proceedings of the National Academy of Sciences, Eric Jacobsen, Professor of Chemistry and Chemical Biology, along with Levi, Li, and Andreas R. Rötheli, have unearthed a natural secret: a “precisely designed hydrogen-bond-donor catalyst.”

The team discovered that, with this sturdy catalyst, phosphate binds “19 times more strongly than the chloride,” another common reaction ingredient. And, it can attach sugars to amino acids, natural products, and drug-molecules “under mild, neutral, and user-friendly conditions,” Levi and Li explained. With their method, the catalyst delivers a necessary but gentle nudge, coaxing phosphate to get to work.

There are, as always, limitations to the method: Sometimes, it needs coddling with tailored reaction conditions and substrates. Also, it requires the use of a fairly complicated catalyst by small-molecule standards, one that requires over 10 laboratory steps to synthesize.

Moving forward, the team plans to expand their method’s repertoire to include new types of sugars, especially the most stubborn of their ilk (mannosides, rhamnosides, and furanoses, for example). To share their (and nature’s) secret, they also intend to commercialize the catalysts, enabling widespread use. In the meantime, their method could create sugars that provide crucial biomedical benefit, like new vaccines and drugs to treat numerous human disorders and diseases, even cancers. It’s clear that, like synthetic chemists, we need sugar. Too much may damage our health, but the right amount could help heal us.

###

Media Contact
Caitlin McDermott-Murphy
[email protected]
617-496-2618

Original Source

https://chemistry.harvard.edu/news/natures-sweets

Related Journal Article

http://dx.doi.org/10.1073/pnas.18111861

Tags: BiochemistrycancerChemistry/Physics/Materials SciencesPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer ChemistryVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

Biological sample

Researchers boost sensitivity and speed of Raman microscopy technique

August 17, 2022
Machine Learning Models Predict Hepatocellular Carcinoma Treatment Response

Machine learning models predict hepatocellular carcinoma treatment response

August 17, 2022

Scientists are a step closer to finding a low toxicity treatment for childhood leukemia

August 17, 2022

Mechanistic insights into contact hypersensitivity could pave the way for drug discovery

August 17, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineViolence/CriminalsWeaponryZoology/Veterinary ScienceVaccinesVehiclesUrbanizationVirologyVirusWeather/StormsUniversity of WashingtonUrogenital System

Recent Posts

  • New prenatal test can reduce time, cost of detecting chromosomal abnormalities
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day
  • Reduced myocardial blood flow is new clue in how COVID-19 is impacting the heart
  • Unconventional water sources may be the key to powering America’s lithium energy demands
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In