• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NASA announces funding for RIT professor to develop novel diffractive solar sails

Bioengineer by Bioengineer
April 25, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Grover Swartzlander earns Phase II award from NASA Innovative Advanced Concepts program

Scientists have been floating designs for solar sails to propel spacecraft for decades, but a new approach being developed by a Rochester Institute of Technology professor could be the key to helping spacecraft photograph the poles of the sun for the first time.

NASA announced it is providing RIT Professor Grover Swartzlander a Phase II award through its NASA Innovative Advanced Concepts (NIAC) program to explore the feasibility of diffractive solar sails over the next two years.

“We’re embarking on a new age of space travel that makes use of solar radiation pressure on large, thin sail membranes,” said Swartzlander. “The conventional idea for the last 100 years has been to use a reflective sail such as a metal coating on a thin polymer and you unfurl that in space, but you can get a force based on the law of diffraction as well. In comparison to a reflective sail, we think a diffractive sail could be more efficient and could withstand the heat of the sun better. These sails are transparent so they’re not going to absorb a lot of heat from the sun, and we won’t have the heat management problem as you do with a metallic surface.”

Swartzlander is developing the diffractive solar sails using optical films made from metamaterials, which are engineered to have properties not found in naturally occurring materials. This approach allows the sails to have a lower mass and substitutes mechanical navigation with electro-optic beam steering, which is more efficient and less prone to breakdowns.

Ultimately Swartzlander hopes to use these diffractive sails to put a constellation of satellites at various different orbits around the sun to provide a 360-degree view of it. He estimates that it would take five years for spacecraft using diffractive solar sails to reach the poles of the sun and hopes to see a demonstration mission within the next five years to see how the diffractive solar sails would perform in space.

“The National Academy of Sciences is continuously asking for more missions that will help understand the physics of the sun, and this could be an important part of that,” said Swartzlander.

Swartzlander conducted a nine-month Phase I NIAC study in 2018, which culminated in an incubator meeting in Washington, D.C., to create a roadmap for advancing metamaterial sails on low Earth-orbiting satellites called CubeSats.

Meanwhile, NASA’s Near-Earth Asteroid Scout (NEA Scout) mission is expected to include the first use of a reflective solar sail in space. NEA Scout is a six-unit CubeSat that will fly into space on NASA’s Orion spacecraft as part of Exploration Mission-1.

For more information, contact Luke Auburn at 585-475-4335 or [email protected].

###

Media Contact
Luke Auburn
[email protected]
https://www.rit.edu/news/nasa-announces-funding-rit-professor-develop-novel-diffractive-solar-sails

Tags: Algorithms/ModelsAstronomyAstrophysicsExperiments in SpaceMaterialsOpticsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Unveiled: New Mechanism Enhances Plasma Confinement Performance

October 22, 2025
blank

Biochar and Moist Soils: A Breakthrough Solution to Reduce Farm Emissions Without Sacrificing Crop Yields

October 22, 2025

Palladium-Catalyzed Coupling of Propargyl Alcohol Esters with Diverse Nucleophiles Enables Synthesis of Polysubstituted Functionalized Conjugated Dienes

October 22, 2025

Vietnam’s Wise Choice Advances Scientific Progress

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1272 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    141 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

APOE4 Drives Nigral Tau Phosphorylation via Cholesterol

The Link Between Professional Soccer and Osteoarthritis: Why So Many Players Are Affected

Efficient DTW: Analyzing Dynamic Psychiatric Processes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.