• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA analyzes rainfall around Typhoon Chan-hom’s ragged eye

Bioengineer by Bioengineer
October 7, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Credit: NASA/NOAA/NRL

A NASA satellite rainfall product that incorporates data from satellites and observations found heavy rainfall occurring throughout Typhoon Chan-hom and the heaviest rainfall in the eyewall. Chan-hom is expected to bring rainfall to Japan on its track through the Northwestern Pacific Ocean.

Chan-hom’s Status on Sept. 18

At 5 a.m. EDT (0900 UTC), the center of Typhoon Chan-hom was located near latitude 26.2 degrees north and longitude 134.4 degrees east. It was centered 378 nautical miles east of Kadena Air Base, Okinawa Island, Japan, moving toward the northwest. Maximum sustained winds are near 65 knots (75 mph/120 kph) with higher gusts.

Estimating Chan-hom’s Rainfall Rates from Space

NASA’s Integrated Multi-satellitE Retrievals for GPM or IMERG, which is a NASA satellite rainfall product, estimated on Oct. 7 at 2 a.m. EDT (0600 UTC), Chan-hom was generating as much as 30 mm (1.18 inches) of rain per hour falling in the ragged eyewall that surrounds the eye. Rainfall throughout most of the storm was estimated as falling at a rate between 5 and 15 mm (0.2 to 0.6 inches) per hour. At the U.S. Naval Laboratory in Washington, D.C., the IMERG rainfall data was overlaid on infrared imagery from NOAA’s GOES-16 satellite to provide a full extent of the storm.

In addition to the rainfall calculation within the typhoon, animated enhanced infrared satellite imagery revealed a consolidating system with a ragged eye. Microwave imagery indicates improved banding of thunderstorms wrapping tightly into a microwave eye feature.

Warnings for heavy rainfall are in effect for Kyushu, the southernmost big island of Japan. Watches were posted for much of Japan’s southeastern and east central coasts.

What Does IMERG Do?

This near-real time rainfall estimate comes from the NASA’s IMERG, which combines observations from a fleet of satellites, in near-real time, to provide near-global estimates of precipitation every 30 minutes. By combining NASA precipitation estimates with other data sources, we can gain a greater understanding of major storms that affect our planet.

Instead, what the IMERG does is “morph” high-quality satellite observations along the direction of the steering winds to deliver information about rain at times and places where such satellite overflights did not occur. Information morphing is particularly important over the majority of the world’s surface that lacks ground-radar coverage. Basically, IMERG fills in the blanks between weather observation stations.

Chan-hom’s Forecast

Forecasters at the Joint Typhoon Warning Center (JTWC) expect Chan-hom to track northwestward to northward through the next two days and closer to Japan. Chan-hom is forecast to make a slow track paralleling the coast of Japan from Oct. 8 through the 11, when it is expected to affect Tokyo before heading out to open waters.

JTWC expects Chan-hom to continue weakening over the next several days and begin transitioning to an extra-tropical storm.

NASA Researches Tropical Cyclones

Hurricanes/tropical cyclones are the most powerful weather events on Earth. NASA’s expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting.

For more than five decades, NASA has used the vantage point of space to understand and explore our home planet, improve lives and safeguard our future. NASA brings together technology, science, and unique global Earth observations to provide societal benefits and strengthen our nation. Advancing knowledge of our home planet contributes directly to America’s leadership in space and scientific exploration.

For more information about NASA’s IMERG, visit: https://pmm.nasa.gov/gpm/imerg-global-image

For updated warnings from the Japan Meteorological Agency, visit: https://www.jma.go.jp/en/warn/

By Rob Gutro
NASA’s Goddard Space Flight Center

###

Media Contact
Rob Gutro
[email protected]

Original Source

https://blogs.nasa.gov/hurricanes/2020/10/07/chan-hom-northwestern-pacific-ocean-3/

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangeClimate ScienceEarth ScienceMeteorologyTechnology/Engineering/Computer ScienceTemperature-Dependent PhenomenaWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Meets Innovation: Transforming University Entrepreneurship Education

October 22, 2025

Phytochemicals, Antioxidants, and Antibacterial Activity of Amija

October 22, 2025

Diabetes Self-Care: A Trial in African-American Adults

October 22, 2025

Revolutionary Ingestible Pill Pioneered for Diagnosis of Intestinal Disorders

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    305 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Meets Innovation: Transforming University Entrepreneurship Education

Phytochemicals, Antioxidants, and Antibacterial Activity of Amija

Diabetes Self-Care: A Trial in African-American Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.