• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoneedles to increase the capacity and robustness of digital memories

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Applying a localized pressure improves the control of metamagnetic materials at the nanoscale

IMAGE

Credit: ICMAB-CSIC

Some memory devices where information from smartphones and computers is stored are based on a very precise control of the magnetic properties, at nanoscopic scale. The more precise this control is, the more storage capacity and speed they can have. In certain cases, the combination of ferromagnetism (where the magnetism of all the atoms in the material points in the same direction) and antiferromagnetism (where the magnetism of the atoms in the material points alternately in opposite directions) is used to store the information. One of the materials that can show these two arrangements is the alloy of iron and rhodium (FeRh), because it shows a metamagnetic transition between these two phases at a temperature very close to room temperature. In particular, it can change state from antiferromagnetic to ferromagnetic simply when heated. The antiferromagnetic state is more robust and secure than the ferromagnetic one, since it is not easily altered by the presence of magnets in its proximity, i.e. an external magnetic field cannot erase the information easily.

A team of researchers from the UAB, the ICMAB, and the ALBA Synchrotron, along with scientists from the UB and the ICN2, have used mechanical pressure to modify this transition and stabilize the antiferromagnetic state. The researchers have observed that pressing the surface of the iron-rhodium alloy with a nanometer-sized needle causes the magnetic state to change in a simple and localized way. By pressing on different areas of the material, the researchers have managed to generate antiferromagnetic nano-islands embedded in a ferromagnetic matrix, a very difficult task with the current techniques available. If the process is repeated over the entire surface of the alloy, the new technique can induce this change across large areas of the material drawing patterns with nanoscopic resolution with areas with different magnetic properties, generating structures as small as those that can currently be achieved using more complex methods.

Improvement to miniaturize magnetic devices

This is a major improvement to miniaturize the patterns that can be built with magnetic materials, an improvement in the resolution of the tools that engineers use to design the magnetic devices of the technology we use daily. “The idea is very simple,” explains Ignasi Fina, researcher at the Institute of Materials Science of Barcelona (ICMAB-CSIC), “in phase transitions, everything you do to the material has a great impact on the other properties. Our alloy has a magnetic phase transition. With a nanometer-sized needle we change the magnetic order just by pressing the material. Specifically, it changes from ferromagnetic to antiferromagnetic. And since the needle is nanometric, the change is at the nanoscale. “

“The new technique based on the application of pressure using nanoneedles can allow the construction of magnetic nanometric devices with much smaller structures and much more robust and safe than the current ones, facilitating the manufacture of magnetic memories with different architectures that improve their capacities”, says ICREA researcher from the Department of Physics at the UAB, Jordi Sort.

There are other techniques based on the application of voltage or intense magnetic fields to increase the stability of the antiferromagnetic phase of the alloy, but they cause large-scale changes in the entire material, which limit its control and miniaturization capacity. Applying pressure in a very localised manner offers unprecedented accuracy, affecting only small local areas at the nanometric scale. When pressing, the transition temperature of the alloy increases, the temperature at which its state changes, which involves the change in its magnetization.

In order to resolve the magnetic changes around an individual indentation on the nanoscale, the work used the Photoemission Electron Microscopy combined with X -ray magnetic circular dichroism at the CIRCE-PEEM beamline of the ALBA Synchrotron. “Our synchrotron light-based techniques make possible to resolve the changes on a really small scale”, explains Michael Foerster, beamline scientist at ALBA.

Applications in other fields

The possible applications go beyond magnetic materials. The fact of modifying the properties of a material by applying pressure, i.e., by modifying the cell volume of its crystalline structure, can be extrapolated to other types of materials. Researchers believe that this technique opens the door to a new way of nanostructuring the physical and functional properties of materials, and of implementing new architectures in other types of non-magnetic nanodevices and microdevices.

###

The research has been highlighted on the cover of the latest edition of the journal Materials Horizons. Led by researchers Ignasi Fina, from the Institute of Materials Science of Barcelona (ICMAB-CSIC), Jordi Sort, ICREA in the Department of Physics at the Autonomous University of Barcelona (UAB), and Michael Foerster, beamline scientist at CIRCE-PEEM from the ALBA Synchrotron, the research has also involved Enrique Menéndez, Alberto Quintana and Daniel Esqué de los Ojos (Department of Physics at the UAB); Carlos Gómez-Olivella (Department of Applied Physics and Optics, University of Barcelona); Oriol Vallcorba and Lucia Aballe (ALBA Synchrotron); Carlos Frontera (ICMAB-CSIC); Josep Nogués (ICREA at the Catalan Institute of Nanoscience and Nanotechnology, ICN2); and Emerson Coy (NanoBioMedical Center, Adam Mickiewicz University).

Media Contact
Octavi López
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/D0MH00601G

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectromagneticsHardwareMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.