• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions

Bioengineer by Bioengineer
January 9, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metal-organic framework-based composites don’t need liquid water to work

IMAGE

Credit: Journal of the American Chemical Society


Northwestern University scientists have successfully combined a nanomaterial effective at destroying toxic nerve agents with textile fibers. This new composite material one day could be integrated into protective suits and face masks for use by people facing hazardous conditions, such as chemical warfare.

The material, a zirconium-based metal-organic framework (MOF), degrades in minutes some of the most toxic chemical agents known to mankind: VX and soman (GD), a more toxic relative of sarin.

“With the correct chemistry, we can render toxic gases nontoxic,” said Omar K. Farha, associate professor of chemistry in the Weinberg College of Arts and Sciences, who led the research. “The action takes place at the nanolevel.”

The study was published recently in the Journal of the American Chemical Society.

The authors write that their work represents, to the best of their knowledge, the first example of the use of MOF composites for the efficient catalytic hydrolysis of nerve agent simulants without using liquid water and toxic volatile bases — a major advantage.

The new composite material integrates MOFs and non-volatile polymeric bases onto textile fibers. The researchers found the MOF-coated textiles efficiently detoxify nerve agents under battlefield-relevant conditions using the gaseous water in the air. They also found the material stands up over a long period of time to degrading conditions, such as sweat, atmospheric carbon dioxide and pollutants.

These features bring the promising material closer to practical use in the field.

“MOFs can capture, store and destroy a lot of the nasty material, making them very attractive for defense-related applications,” said Farha, a member of the International Institute for Nanotechnology.

MOFs are well-ordered, lattice-like crystals. The nodes of the lattices are metals, and organic molecules connect the nodes. Within their very roomy pores, MOFs can effectively capture gases and vapors, such as nerve agents.

It is these roomy pores that also can pull enough water from the humidity in the air to drive the chemical reaction in which water is used to break down the bonds of the nerve agent.

The approach developed at Northwestern seeks to replace the technology currently in use: activated carbon and metal-oxide blends, which are slower to react to nerve agents. Because the MOFs are built from simple components, the new approach is scalable and economical.

The title of the paper is “Integration of Metal-Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions.” The first authors are Zhijie Chen and Kaikai Ma, postdoctoral fellows in Farha’s research group.

###

Media Contact
Megan Fellman
[email protected]
847-491-3115

Related Journal Article

http://dx.doi.org/10.1021/jacs.9b11172

Tags: Chemical/Biological WeaponsChemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Study Uncovers Mechanisms Safeguarding Chromosome Ends

September 9, 2025
How Evolution Sheds Light on Autism Rates in Humans

How Evolution Sheds Light on Autism Rates in Humans

September 9, 2025

Diverse Strategies Enable Fly Embryos to Resolve the Challenge of ‘Tissue Tectonic Collision’

September 9, 2025

Elephant Group Size and Age in Serengeti vs. Mikumi

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Communication Gaps and Urges Shared Decision-Making in Lung Cancer Care Across Europe

Echocardiographic Insights on Biventricular Function in Asthmatic Kids

Revolutionary ‘Bottlebrush’ Particles Target Cancer Cells with High-Dose Chemotherapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.