• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

N and P co-doping catalysts synthesized in recent study

Bioengineer by Bioengineer
May 4, 2023
in Chemistry
Reading Time: 2 mins read
0
N and P Co-doping Catalysts Synthesized in Recent Study
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, the team from Institute of Solid State Physics, Hefei Institute of Physical Sciences of Chinese Academy of Sciences, made breakthrough in the research of non-metallic heteroatom doping to regulate catalytic performance.

N and P Co-doping Catalysts Synthesized in Recent Study

Credit: SHEN Yue

Recently, the team from Institute of Solid State Physics, Hefei Institute of Physical Sciences of Chinese Academy of Sciences, made breakthrough in the research of non-metallic heteroatom doping to regulate catalytic performance.

In this work, N and P co-doping carbon-coated cobalt-based catalyst (Co@NPC) was synthesized, and the effect of heteroatom doping in the catalyst on the selective hydrogenation of cinnamaldehyde was explored.

The related research results were published in Journal of Catalysis.

As potential material in the field of catalysis, heterogeneous catalyst of metal nanoparticles supported on non-metallic atoms doped carbon supports demonstrate great catalytic activity in the catalytic hydrogenation reaction. Compared with metal atoms, non-metal atoms possess greater electronegativity. Therefore, the introduction of non-metal heteroatoms can effectively modulate the electronic structure and chemical properties of materials, and produce rich active sites to improve catalytic performance.

In this study, researchers prepared Co@NPC and applied it in the aqueous hydrogenation reaction of cinnamaldehyde. The catalyst was coated by the carbon layer during the synthesis process (hydrothermal and calcination). Once the carbon formed a coating layer, it could prevent the metal from sintering, leaching and growing up. Furthermore, this structure displayed highly dispersed abundant active sites thus contributing to the excellent activity catalyst performance.

It was found that Co@NPC exhibited excellent performance in reaction. 92.1% conversion of cinnamaldehyde and 79.7% selectivity of cinnamaldehyde could be achieved respectively under the reaction conditions of 80 ℃, 0.5 MPa hydrogen pressure and 5 h. Compared with the catalyst Co@C without doping, N, P co-doping can significantly improve the catalytic performance, and control the activity and selectivity of the reaction by adjusting the doping amount.

Their research proved that P doping could improve the selectivity of cinnamyl alcohol, while N doping was closely related to the catalytic activity of the catalyst.

The result of density functional theory (DFT) calculation showed that the electronegativity difference between N, P and C atoms led to the interaction between electrons, changed the ratio of Co and CoO in the catalyst, thereby changing the adsorption strength of cinnamaldehyde on the surface of the catalyst. The reaction products can be adjusted according to the difference of adsorption energy.

This work showed that doping of non-metallic atoms made it more possible to regulate the electronic structure of catalyst, which provided a new strategy for the design of catalyst for selective hydrogenation of biomass derivatives.



Journal

Journal of Catalysis

Article Title

Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: Tunable activity and selectivity via N,P co-doping

Article Publication Date

9-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.