• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

N and P co-doping catalysts synthesized in recent study

Bioengineer by Bioengineer
May 4, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, the team from Institute of Solid State Physics, Hefei Institute of Physical Sciences of Chinese Academy of Sciences, made breakthrough in the research of non-metallic heteroatom doping to regulate catalytic performance.

N and P Co-doping Catalysts Synthesized in Recent Study

Credit: SHEN Yue

Recently, the team from Institute of Solid State Physics, Hefei Institute of Physical Sciences of Chinese Academy of Sciences, made breakthrough in the research of non-metallic heteroatom doping to regulate catalytic performance.

In this work, N and P co-doping carbon-coated cobalt-based catalyst ([email protected]) was synthesized, and the effect of heteroatom doping in the catalyst on the selective hydrogenation of cinnamaldehyde was explored.

The related research results were published in Journal of Catalysis.

As potential material in the field of catalysis, heterogeneous catalyst of metal nanoparticles supported on non-metallic atoms doped carbon supports demonstrate great catalytic activity in the catalytic hydrogenation reaction. Compared with metal atoms, non-metal atoms possess greater electronegativity. Therefore, the introduction of non-metal heteroatoms can effectively modulate the electronic structure and chemical properties of materials, and produce rich active sites to improve catalytic performance.

In this study, researchers prepared [email protected] and applied it in the aqueous hydrogenation reaction of cinnamaldehyde. The catalyst was coated by the carbon layer during the synthesis process (hydrothermal and calcination). Once the carbon formed a coating layer, it could prevent the metal from sintering, leaching and growing up. Furthermore, this structure displayed highly dispersed abundant active sites thus contributing to the excellent activity catalyst performance.

It was found that [email protected] exhibited excellent performance in reaction. 92.1% conversion of cinnamaldehyde and 79.7% selectivity of cinnamaldehyde could be achieved respectively under the reaction conditions of 80 ℃, 0.5 MPa hydrogen pressure and 5 h. Compared with the catalyst [email protected] without doping, N, P co-doping can significantly improve the catalytic performance, and control the activity and selectivity of the reaction by adjusting the doping amount.

Their research proved that P doping could improve the selectivity of cinnamyl alcohol, while N doping was closely related to the catalytic activity of the catalyst.

The result of density functional theory (DFT) calculation showed that the electronegativity difference between N, P and C atoms led to the interaction between electrons, changed the ratio of Co and CoO in the catalyst, thereby changing the adsorption strength of cinnamaldehyde on the surface of the catalyst. The reaction products can be adjusted according to the difference of adsorption energy.

This work showed that doping of non-metallic atoms made it more possible to regulate the electronic structure of catalyst, which provided a new strategy for the design of catalyst for selective hydrogenation of biomass derivatives.



Journal

Journal of Catalysis

Article Title

Geometric and electronic effects of [email protected] catalyst in chemoselective hydrogenation: Tunable activity and selectivity via N,P co-doping

Article Publication Date

9-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Artistic illustration of exoplanet WASP-18 b

NIRISS instrument on Webb maps an ultra-hot Jupiter’s atmosphere

May 31, 2023
Saw-Wai Hla headshot

Scientists’ report world’s first X-ray of a single atom in Nature

May 31, 2023

A nanocrystal shines on and off indefinitely

May 31, 2023

Microbes powered by electricity

May 31, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining loneliness and problem drinking in the Hispanic community

New study highlights need for expanded application of prism adaptation treatment for spatial neglect

NIRISS instrument on Webb maps an ultra-hot Jupiter’s atmosphere

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In