• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Myocarditis: Overshooting the mark

Bioengineer by Bioengineer
January 28, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that a protein called midkine, a member of the class of signaling molecules known as cytokines, is a key driver of inflammation in the heart muscle that can lead to heart failure in patients with myocarditis.

Myocarditis denotes an inflammatory response against the heart muscle, which can strike at any age. Although it often clears up spontaneously without any after-effects, in some patients the inflammation can become chronic and may ultimately lead to heart failure. A new study conducted by LMU researchers has now elucidated the role of the signaling molecule (‘cytokine’) named midkine for the development and progression of myocarditis. The results of the work, which was carried out by a team led by Professor Barbara Walzog and Dr. Ludwig Weckbach (both members of Collaborative Research Center 914 on “Trafficking of Immune Cells in Inflammation, Development and Disease”) are reported in the Journal of Experimental Medicine.

The authors analyzed tissue samples obtained from patients with myocarditis, and were able for the first time to demonstrate the presence of ‘neutrophil extracellular traps’ (NETs) in human cardiac tissue. The formation of NETs is a characteristic component of the innate immune response to pathogenic microorganisms. NETs are networks made up of DNA extruded by a class of white blood cells known as neutrophils and serve to immobilize bacteria. This facilitates their engulfment and destruction by phagocytosis, which is the primary function of neutrophils. However, if the immune response overshoots, the build-up of NETs, and the concomitant release of pro-inflammatory signaling molecules, can damage the heart tissue. The authors showed that midkine was able to mediate the formation of NETs as well as the accumulation of neutrophils in inflamed heart tissue. In order to test whether midkine has a deleterious effect on the inflamed heart muscle, Weckbach and colleagues turned to an animal model of autoimmune myocarditis. “We demonstrated that antibody-mediated inhibition of midkine indeed reduced neutrophil infiltration into the heart tissue and led to a significant improvement in heart function. In particular, this intervention protected the tissue from undergoing fibrotic remodeling, a process which is a major contributor to heart failure,” says Barbara Walzog. The study thus identifies a possible point of attack for efforts to halt progression of the condition: “These findings identify the cytokine midkine as a new target structure for the effective treatment of inflammatory heart conditions,” says Ludwig Weckbach.

###

Media Contact
Dr. Kathrin Bilgeri
[email protected]
0049-892-180-3423

Related Journal Article

https://www.en.uni-muenchen.de/news/newsarchiv/2019/walzog_myocarditis.html
http://dx.doi.org/10.1084/jem.20181102

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Career Adaptability Patterns in Chinese Cardiovascular Nurses

October 7, 2025

Once-Weekly Insulin Icodec: Efficacy and Safety in India

October 7, 2025

Hydrogen Sulfide Shields Spinal Cord via Rac1 Persulfidation

October 7, 2025

Unveiling Thymbra spicata’s Bioactive Compounds and Actions

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Career Adaptability Patterns in Chinese Cardiovascular Nurses

Once-Weekly Insulin Icodec: Efficacy and Safety in India

Hydrogen Sulfide Shields Spinal Cord via Rac1 Persulfidation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.