• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Mutant bacterial receptor could point to new therapies against opportunistic pathogen

Bioengineer by Bioengineer
June 13, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: McCready AR, et al. (2019)

Researchers have developed a new mutant version of a receptor used by a bacterial pathogen for a chemical communication process called quorum sensing, according to a study published June 13 in the open-access journal PLOS Pathogens by Bonnie Bassler of Princeton University, and colleagues. As the authors note, the mutant receptor could be used to identify therapeutic compounds that inhibit quorum sensing, fulfilling an urgent medical need.

The human pathogen Pseudomonas aeruginosa uses quorum sensing to orchestrate group behaviors, including biofilm formation and the production of infection-promoting molecules called virulence factors. Quorum sensing, which is essential for P. aeruginosa to be a pathogen, relies on the production, release, and detection of extracellular signal molecules called autoinducers. Autoinducers are bound by partner receptor proteins, and together, autoinducer-receptor complexes activate the transcription of quorum-sensing genes. In the new study, Bassler and colleagues identify, purify, and characterize a mutant version of the P. aeruginosa RhlR quorum-sensing receptor, which they call RhlR*.

Remarkably, RhlR* does not require its partner autoinducer to function. P. aeruginosa carrying RhlR* can properly form biofilms, produce virulence factors, and infect roundworms. Because RhlR* does not rely on an autoinducer to function, biochemical and genetic analyses that were previously not possible with RhlR could be performed with RhlR*. The findings provide new insight into the workings of other P. aeruginosa quorum-sensing components, most notably, the PqsE enzyme that functions together with RhlR to control virulence factor production. The authors propose that RhlR* is an especially valuable tool for learning about cell-cell communication and virulence in P. aeruginosa, a pathogen of high clinical relevance.

The authors add, “To our knowledge, this is the first report of a quorum-sensing receptor of this class that functions without its partner autoinducer molecule, opening up entirely new possibilities for study of virulence in Pseudomonas aeruginosa, a globally important pathogen.”

###

Research Article

Funding: This work was supported by the Howard Hughes Medical Institute, National Institutes of Health Grant 5R37GM065859, National Science Foundation Grant MCB-1713731 (B.L.B.), NIGMS T32GM007388 (A.R.M.), and a Jane Coffin Childs Memorial Fund for Biomedical Research Postdoctoral Fellowship (J.E.P.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: No. The authors have declared that no competing interests exist.

Citation: McCready AR, Paczkowski JE, Cong J-P, Bassler BL (2019) An autoinducer-independent RhlR quorum-sensing receptor enables analysis of RhlR regulation. PLoS Pathog 15(6): e1007820. https://doi.org/10.1371/journal.ppat.1007820

Author Affiliations:
Princeton University

In your coverage please use this URL to provide access to the freely available paper: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007820

Media Contact
Bonnie Bassler
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.ppat.1007820

Tags: BiologyCell BiologyInfectious/Emerging DiseasesMedicine/HealthMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Impact of resuscitation with 100% oxygen during physiological-based cord clamping or immediate cord clamping on lung inflammation and injury as a headline for a science magazine post, using no more than 8 words

Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

Partial Flood Defenses Heighten Risks, Inequality in Cities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.