• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mud-slurping chinless ancestors had all the moves

Bioengineer by Bioengineer
October 1, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hugo Salais (Metazoa Studio)

A team of researchers, led by the University of Bristol, has revealed our most ancient ancestors were ecologically diverse, despite lacking jaws and paired fins.

Long before they evolved out of the water, our ancient ancestors were simple fish-like creatures, but without fins or chins, who survived by filtering nutrients from sediment.

They have long been thought of as the lazy lumps who spent most of their lives resting on or near to the sea floor. The belief was that everything changed with the evolution of jawed vertebrates whose paired fins made them the super-swimmers and active predators, driving their jawless relatives to extinction.

However, a new study published in the journal Current Biology overturns this classical evolutionary story.

Researchers from the University of Bristol used computer simulations to explore how avatars of our extinct ancestors interacted with water currents. These experiments revealed the bizarre spikes and spines that ornamented the heads of these jawless vertebrates were actually hydrodynamic adaptations, passively generating lift from water currents flowing over the body. The varying head shapes of different species allowed them to adapt to different positions, some high, others low, within the water. Our ancient ancestors were already ecologically diverse, long before the evolution of their jawed vertebrate relatives.

Dr Humberto G. Ferron, a postdoctoral researcher from the University of Bristol and one of the paper’s co-authors, said: “The evolution of jaws and fins have classically been seen as the key evolutionary inventions that allowed vertebrates to diversify their lifestyles.

“In this context, jawless ancestors, characterized by the presence of heavy rigid headshields, were assumed to be cumbersome fish-like creatures, living on the bottom of rivers and seas, with poor manoeuvrability.”

The question of how our ancient ancestors made a living has long been a mystery because there are no animals like them alive today. The ‘osteostracans’ (their latin name, meaning bony shells) were heavily armoured, encased in thick bone from snout to tail. They lacked a rear pair of legs and some had none at all; many possessed bizarre horn-like extensions from the front of their heads.

Ferrón and colleagues tackled this problem using state-of-the-art computational engineering techniques that simulate the behaviour of fossil avatars in water currents.

Dr Imran Rahman, from the Oxford University Museum of Natural History, said: “The application of computational fluid dynamics, has allowed us to study the swimming performance of ancient vertebrates and learn more about their position in evolutionary history.

Dr Carlos Martinez Perez, from the University of Valencia (Spain), added: “Our simulations reveal that the different species of osteostracans show equally different hydrodynamic efficiencies. Some of them performed better when moving close to the sea floor or riverbed while others performed better when swimming freely in the water.”

Professor Phil Donoghue, another Bristol co-author, concluded: “The different species’ body shapes are adapted to different environments, revealing distinct lifestyles among these groups of jawless early vertebrates.

“Our results calls into question the prevailing view that these extinct groups of jawless vertebrates were ecologically constrained, and reveals the main evolutionary hypothesis for the origin of jawed vertebrates is more complex than previously thought.”

###

Media Contact
Shona East
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.09.031

Tags: Earth ScienceEvolutionPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Insights into Ichthyophis bannanicus Ecological Adaptations

New Insights into Ichthyophis bannanicus Ecological Adaptations

December 1, 2025
Olfactory Binding Proteins in Insects: A Comprehensive Review

Olfactory Binding Proteins in Insects: A Comprehensive Review

December 1, 2025

Comparative Study of Two Innovative Single-Cell RNA Platforms

December 1, 2025

Exploring Denmark’s Tardigrade Fauna through Citizen Science

December 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Identifies Early Right Ventricular Activation

Distinguishing Diabetes Types in Kids with Ketoacidosis

Boric Acid and Quercetin Mitigate Paraquat Neurotoxicity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.