• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, April 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

MSU lands NIH grant to study connection between fish genes and human medicine

Bioengineer by Bioengineer
March 23, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. – Michigan State University has landed a $727,000 grant from the National Institutes of Health to improve the use of fish as disease models for human medicine.

Ingo Braasch, MSU integrative biologist who's leading the MSU efforts of this collaborative grant that also includes the University of Oregon and Nicholls State University (Louisiana), will focus on the spotted gar, which has a similar genome to humans and zebrafish, a popular biomedical fish model. The ancient, slowly evolving spotted gar can serve as a "bridge species" between human and zebrafish, thereby opening pathways to important advancements in human biomedical research.

"There are potentially thousands of connections that can be made from human to zebrafish and back through gar as a steppingstone that could not be done by comparing human and zebrafish directly," Braasch said. "This points to a better way to perform biomedical research for studying human disease in zebrafish. With higher precision, researchers will be able to find the right region in the genome of zebrafish to design experiments and mutation models."

Genome-wide association studies, or GWAS, have detected thousands of genetic variations near hundreds of genes associated with numerous human diseases. The problem is that scientists don't know which gene near a GWAS region in the human genome may cause the disease. Comparative medicine, using rearranged genomes of fish models to test hypotheses, can help locate those troublesome intersections and lead to personalized approaches to investigate and potentially treat those diseases.

Zebrafish are often used as model fish in biomedical research, but due to their genetic divergence from humans it can be difficult to make direct biological comparisons.

Braasch believes the spotted gar can help biomedical researchers make the jump. He hopes to develop additional resources to help identify disease-associated genetic region in humans. In turn, researchers can then locate the corresponding region in spotted gar and then investigate the appropriate location in the genomes of zebrafish or other fish models.

Yes, but what makes gar so special?

First, ever since the fish and human lineages split about 450 million years ago, the gar genome has not changed as much as that of more modern fish like zebrafish. Second, gars also offer a window into the evolution of vertebrate anatomy because their body plan has not changed as much as those of modern fish. Gar helps to understand how fins evolved into limbs that allowed fish to walk on land and how enamel on our teeth evolved from ancient types of fish scales, which are still found in gar.

"We are using gar to further improve comparisons of humans to zebrafish to make zebrafish an even better model system for disease research," Braasch said. "And by studying gar, zebrafish and other fishes side-by-side, we also hope to answer many more evolutionary questions about the origin of vertebrate genomes and their biology."

###

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Successful research development approach helps cancer patients using mobile tech

April 22, 2021
IMAGE

Army-funded research paves way for improved lasers, communications

April 22, 2021

Silver ions hurry up, then wait as they disperse

April 22, 2021

C-Path opens access to Duchenne Regulatory Science Consortium database

April 22, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    A sturdier spike protein explains the faster spread of coronavirus variants

    45 shares
    Share 18 Tweet 11
  • New evidence in search for the mysterious Denisovans

    34 shares
    Share 14 Tweet 9
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    61 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVirologyVehiclesZoology/Veterinary ScienceUrbanizationVirusVaccineVaccinesWeather/StormsUrogenital SystemUniversity of WashingtonViolence/Criminals

Recent Posts

  • Successful research development approach helps cancer patients using mobile tech
  • Army-funded research paves way for improved lasers, communications
  • Silver ions hurry up, then wait as they disperse
  • C-Path opens access to Duchenne Regulatory Science Consortium database
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In