• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Move over Michaelis-Menten!

Bioengineer by Bioengineer
August 20, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mateusz Dyla

Cells send signals through enzyme cascades, where one enzyme passes the signal to the next. In such cascades, it is crucial that the enzyme recognizes the right substrates to ensure that, for example, a hormone activates the right cellular activities. Protein kinases, the enzymes in such cascades, are usually not sufficiently specific on their own, and therefore they rely on other proteins to physically connect them to the right substrates.

“Currently, we describe signalling enzymes with equations developed for metabolic enzymes,” Magnus Kjærgaard explains. “Metabolic enzymes that make energy for our bodies, for example, need to process many substrates per minute. In contrast, signalling enzymes act as switches, and often only need to convert a single substrate to have an effect. Therefore, the equations developed to describe metabolic enzymes are less relevant for signalling enzymes.”

For more than a hundred years, biochemists have described the activity of enzymes using the Michaelis-Menten equation, which describes how activity increases with increased substrate equation. When the enzyme is connected to its substrate, it does not matter how much substrate is present. Instead, the speed of the reaction depends on how the enzyme is connected to the substrate and thus on the connector molecule. Until now, we have not had any description of how the structure of such molecules affected enzymatic reactions.

“Normally, the question you are trying to answer is what graph shape describes the enzyme activity. We had a much more fundamental problem,” says first-author Mateusz Dyla. “What should we put on the X-axis instead of concentration?”

Connector molecules control cellular signalling

The authors made a model system where they could change the connection between the enzyme and the substrate. They used this to measure how the length of a flexible connector affects the first round of catalysis by the enzyme, which took place in milliseconds. Finally, they ended up with an equation that describes how the speed of the enzyme depends on the connection between enzyme and substrate. This equation suggested that connector molecules play an overlooked role in controlling cellular signalling.

The connection between enzyme and substrate also affects which substrates the enzyme prefers. Substrates that look similar can be very different when the enzyme only processes a single connected substrate.

“It is like the difference between how long it takes me to eat a single hotdog, and how many hotdogs I can eat over a whole week,” Magnus explains. “Over the course of a week, I will be limited by how fast I can digest the hotdogs. This is irrelevant to the time it takes to eat the first hotdog. Therefore, the two types of measurements give different results. If you want to understand kinase switches, you have to focus on the first round of catalysis.”

In the long-term, this may have implications for the development of drugs targeting kinases in, for example, cancer. Mateusz explains: “We hope that one day it will be possible to make drugs that not only target the enzyme, but also target how it is connected to its substrate.”

The results have been published in the international journal PNAS.

###

Media Contact
Magnus Kjærgaard
[email protected]

Original Source

https://mbg.au.dk/en/news-and-events/news-item/artikel/move-over-michaelis-menten/

Related Journal Article

http://dx.doi.org/10.1073/pnas.2006382117

Tags: BiochemistryBiologyBiotechnologyCell BiologyGeneticsMicrobiologyMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Copper’s Redox Role in Ullmann Reactions

September 22, 2025

Koala Stress Levels Connected to Increased Disease Risk

September 22, 2025

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

September 22, 2025

Inflammation Linked to Life-Threatening Lung Malformations in Infants

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Copper’s Redox Role in Ullmann Reactions

Koala Stress Levels Connected to Increased Disease Risk

Metabolic Markers Identified as Potential Predictors of Breast Cancer Risk in High-Risk Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.