• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mouse study suggests vaccine strategy for immunocompromised patients

Bioengineer by Bioengineer
October 26, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study led by Som Nanjappa at the University of Illinois College of Veterinary Medicine identifies a cellular target that may improve efficacy in vaccines designed to protect immunocompromised individuals from potentially deadly opportunistic infections.

The study, conducted in a mouse model and recently published in the Journal of Immunology, shows that a protein important in regulating immune response, called CBLB, can be targeted in combination with an inactivated vaccine to elicit immunity through a unique T cell pathway. This approach may lead to protective vaccines for immune-impaired patients, such as those undergoing chemotherapy, immunosuppressive therapy, or immune deficiency.

While fungal pathogens rarely sicken healthy individuals, the incidence of fungal infections in people with HIV/AIDS or other immune deficiencies has risen sharply in recent years. This population is highly susceptible to fungal infections, resulting in as much as 70 percent mortality even when treated with antifungal medications.

"Because prevention is better than cure, the ideal solution would be to vaccinate immunocompromised individuals against such opportunistic infections," said Dr. Nanjappa. "Currently, however, there are no licensed fungal vaccines. Additionally, in order to be safe for use in immunocompromised patients, such a vaccine would need to be based on an inactivated rather than live pathogen. Yet inactivated vaccines stimulate a weaker immune response."

To address these obstacles to vaccine development, Dr. Nanjappa and his colleagues at the U. of I. and at the University of Wisconsin-Madison sought targets that could be used as adjuvants for fungal vaccines. Casitas B-lymphoma-b (CBLB) is a critical negative regulator of T cell response. Targeting CBLB has been shown to help control chronic viral infections and tumors. The new paper reports on extensive analyses of the role of CBLB in CD8+ T cell immune response to various live and inactivated vaccines in mouse models that had been depleted of CD4+ T cells.

CD4+ T cells, sometimes called "helper" T cells, are required players in almost all the body's immune responses. They signal activity by other infection-fighting white blood cells, causing B cells to secrete antibodies, macrophages to destroy microbes, and CD8+ T cells (sometimes called "cytotoxic" or "killer" T-cells) to kill infected cells. CD4+ T cells also appear to play a critical role in the body's ability to fight off fungal infections.

Previous work by Nanjappa and colleagues showed that a live attenuated fungal vaccine can, in the absence of CD4+ T cells, stimulate some CD8+ T cells (type 1 and type 17) to take on some of the function of CD4+ T cells and generate long-term immunity against fungal pathogens in a mouse model.

Data published in the current study support the premise that adjuvants targeting a negative regulator of T cell response such as CBLB could provide lasting immunity against lethal fungal pathogens in a population deficient in CD4+ T cells. The study also showed that targeting CBLB also invigorates CD8+ T cell response to existing viral infection.

These findings may have broad translational potential for clinical applications for a variety of immunocompromised conditions, from transplantation and chemotherapy to the immunosuppressive stages of pregnancy.

###

This study was supported by NIH-NIAID R21 to Dr. Nanjappa and a graduate research assistantship to Dr. Mudalagiriyappa from the University of Illinois at Urbana-Champaign Department of Pathobiology.

The article may be found at Journal of Immunology (2018. Sep 15; 201(6):1717-1726).

Media Contact

Christine Beuoy
[email protected]
@NewsAtIllinois

http://www.illinois.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

October 10, 2025

Proximity to Toxic Sites Associated with Increased Risk of Aggressive Breast Cancer

October 10, 2025

Solar Power Illuminates Path to a Fossil-Free Chemical Industry

October 10, 2025

Understanding Triage Nurses’ Responses to Workplace Violence

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1195 shares
    Share 477 Tweet 298
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

Wirth Named Fellow of the American Physical Society

New Tool Enables Single-Cell Analysis of Specific Genetic Variants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.