• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Most of Earth’s carbon was hidden in the core during its formative years

Bioengineer by Bioengineer
April 1, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New work reveals how carbon behaved during Earth’s violent formative period

IMAGE

Credit: Rebecca Fischer, Elizabeth Cottrell and Marion Le Voyer, Kanani Lee, and the late Erik Hauri.

Washington, DC– Carbon is essential for life as we know it and plays a vital role in many of our planet’s geologic processes–not to mention the impact that carbon released by human activity has on the planet’s atmosphere and oceans. Despite this, the total amount of carbon on Earth remains a mystery, because much of it remains inaccessible in the planet’s depths.

New work published this week in Proceedings of the National Academy of Sciences reveals how carbon behaved during Earth’s violent formative period. The findings can help scientists understand how much carbon likely exists in the planet’s core and the contributions it could make to the chemical and dynamic activity occurring there–including to the convective motion powering the magnetic field that protects Earth from cosmic radiation.

Earth’s core is comprised mostly of iron and nickel, but its density indicates the presence of other lighter elements, such as carbon, silicon, oxygen, sulfur, or hydrogen. It’s been long suspected that there’s a tremendous reservoir of carbon hiding down there. But to attempt to quantify it, the research team used laboratory mimicry to understand how it got into the core in the first place.

The group was comprised of Harvard University’s Rebecca Fischer, the Smithsonian Institution’s Elizabeth Cottrell and Marion Le Voyer, both former Carnegie postdoctoral fellows, Yale University’s Kanani Lee, and Carnegie’s late Erik Hauri, the memory of whom the authors acknowledge.

“To understand present day Earth’s carbon content, we went back to our planet’s babyhood, when it accreted from material surrounding the young Sun and eventually separated into chemically distinct layers–core, mantle, and crust,” said Fischer. “We set out to determine how much carbon entered the core during these processes.”

This was accomplished by lab experiments that compared carbon’s compatibility with the silicates that comprise the mantle to its compatibility with the iron that comprises the core while under the extreme pressures and temperatures found deep inside the Earth during its formative period.

“We found that more carbon would have stayed in the mantle than we previously suspected,” explained Cottrell. “This means the core must contain significant amounts of other lighter elements, such as silicon or oxygen, both of which become more attracted to iron at high temperatures.”

Despite this surprising discovery, the majority of Earth’s total carbon inventory does likely exist down in the core. But it still makes up only a negligible component of the core’s overall composition.

“Overall, this important work improves our understanding of how Earth’s carbon was accumulated during the planetary formation process and sequestered into the mantle and core as they chemically differentiated,” concluded Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, where Hauri worked. “I only wish Erik was still with us to see the results published this week.”

###

This work was supported by a National Science Foundation postdoctoral fellowship.

It was performed, in part, under the auspices of the U.S, Department of Energy by Lawrence Livermore National Laboratory.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact
Liz Cottrell
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1919930117

Tags: Earth ScienceGeology/SoilGeophysicsGeophysics/GravityHydrology/Water ResourcesPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

DGIST Advances Ultrasound Wireless Charging for Implantable Medical Devices

August 4, 2025
Advancing Clinical Gait Analysis with Generative AI and Musculoskeletal Simulation

Advancing Clinical Gait Analysis with Generative AI and Musculoskeletal Simulation

August 4, 2025

Breaking Boundaries: The Deaminative Giese Reaction Revolution

August 4, 2025

Catalytic C(sp2) Expansion of Alkylboranes

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    66 shares
    Share 26 Tweet 17
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breast Cancer Survival Trends in Ethiopia Revealed

Real-Time In-Situ Magnetization for Soft Robotics

Ultrafast Metasurface Switching via Optical Symmetry Breaking

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.