• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Monitoring the body’s fat burning by breath

Bioengineer by Bioengineer
February 10, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tohoku University

Your breath holds the key to monitoring fat burning, and now a research group from Tohoku University has created a compact and low-cost device that can measure how our body metabolizes fat.

The device uses an ultraviolet lamp to gauge exhaled acetone gas, which is produced in the blood through the metabolic reaction of fat.

“Precise measurements of acetone gas concentration allows us to determine the body’s ability to metabolize fat and develop exercise methods for efficient fat burning,” says Professor Yuji Matsuura from Tohoku University’s Graduate School of Biomedical Engineering, who led the research group.

The details of their study were published in the journal Sensors on January 12, 2021

Matsuura and his team focused on ultraviolet light, which due to its extremely short wavelength is strongly absorbed by acetone gas. They succeeded in measuring the acetone concentration with high accuracy: 0.03 ppm–while the acetone concentration is about 1 ppm in exhaled air.

To do this, they trapped exhaled air in a thin tubular optical fiber–called a hollow optical fiber–that had been exposed to vacuum ultraviolet light produced from an ultraviolet lamp. The group measured the degree to which the light is weakened as a result of the absorption of acetone gases to ascertain the acetone gas concentration.

When putting the device to use the group discovered that fat burning rates gradually increased after exercise. In contrast, the rate remained constant during exercise, indicating that a substantial part of fat metabolization occurs after exercise.

Until now, a large mass spectrometer was required to monitor fat metabolization. The new device, however, comprises only three components: a lamp, a hollow optical fiber, and a small spectrometer making it compact and low cost.

“The present research may also lead to non-invasive diagnosis methods for diabetes, since diabetic patients have high concentrations of acetone gas in their breath,” added Matsuura.

###

Media Contact
Yuji Matsuura
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/s21020478

Tags: Medicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Combating Neuroendocrine Prostate Cancer via Nitric Oxide

November 7, 2025

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

November 7, 2025

Unraveling μ-Opioid Receptor Signaling Plasticity

November 7, 2025

Enhancing Nursing Students’ Pressure Injury Assessment Skills

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Combating Neuroendocrine Prostate Cancer via Nitric Oxide

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

Unraveling μ-Opioid Receptor Signaling Plasticity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.