• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Molecular signatures can predict the efficacy of malaria vaccines

Bioengineer by Bioengineer
May 13, 2020
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study reveals that it is possible to identify those individuals that will be protected by the vaccine before its administration

IMAGE

Credit: ISGlobal

Molecular signatures before and after immunization can predict vaccine-induced protection, according to a study by ISGlobal, an institution supported by “la Caixa”. The study analysed the gene expression in peripheral blood cells from individuals immunized with the first malaria vaccine (Mosquirix or RTS,S) and another experimental malaria vaccine. The results, published in Science Translational Medicine suggest that boosting the immune system before vaccination could potentially improve vaccine efficacy.

Malaria remains a major public health problem, causing almost 200 million cases and over 400,000 deaths in 2018. The main obstacles for the development of an effective vaccine against such a complex parasite are the lack of immune markers of protection and the poor understanding of the mechanisms underlying such protection.

In this study, the research team used genomics technologies combined with data science and artificial intelligence to identify molecular signatures that predict vaccine efficacy (or immunogenicity). They compared two vaccines: i) the Mosquirix vaccine that is being tested in large-scale pilot implementation studies in Africa and that provides partial protection, and ii) the CPS vaccine, based on the inoculation of attenuated sporozoites of the Plasmodium falciparum parasite, which has a high efficacy in adult volunteers and is similar to one of the most promising candidate vaccines.

The researchers used white blood cells obtained from 24 adult volunteers before and after CPS immunization, and from 225 infants or children from three African countries that participated in the Mosquirix phase 3 clinical trial. A comprehensive analysis of genes expressed by the white blood cells after immunization revealed a molecular profile associated with protection, for both vaccines. More surprisingly, the study also identified a baseline signature, (i.e. prior to immunization) that correlated with protection.

“This suggests that we could identify individuals who lack such baseline signature and give them a higher CPS vaccine dose, or simply boost their immune system before vaccine administration to improve its efficacy,” explains ISGlobal researcher and first author of the study, Gemma Moncunill.

“These results, obtained with two different vaccines and groups of individuals, suggest there are common protective responses against malaria,”, says Carlota Dobaño, study coordinator and head of the Malaria Immunology Group at ISGlobal. “The results also confirm the potential of this type of approach to better understand the immune response to vaccines and molecular signatures associated with protection against complex diseases,” they add.

The authors conclude that the signatures of protection could be useful as in vitro surrogates to determine the efficacy of these and other malaria vaccine candidates in clinical trials and accelerate their testing.

The malaria vaccine trials were performed in collaboration with the Swiss Tropical and Public Health Institute, the Manhiça Health Research Center in Mozambique, the Ifakara Health Institute in Tanzania, the University of Tubingen in Germany, the Centre de Recherches Médicales de Lambaréné in Gabon, and the Radboud University Medical Center in The Netherlands.

###

Media Contact
Adelaida Sarukhan
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aay8924

Tags: Disease in the Developing WorldImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthParasitologyVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    51 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nano- and Micro-Polystyrene Impact Gut Cells, Neurons

Adolescents Face Cancer’s Impact on Identity, Sexuality

Critical 70% CO2 Threshold for Viable Geological Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.