• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular puzzle reveals unknown stages of fetal development

Bioengineer by Bioengineer
March 5, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By applying gene analysis to individual cells from early mouse embryos, researchers at Karolinska Institutet in Sweden have discovered previously unknown cellular stages of fetal development from fertilised egg to living being. The study is published in the scientific journal Cell Reports.

All over the world, researchers are trying to find all the pieces of the puzzle describing how a fertilised egg develops into a healthy being, in order to gain a detailed understanding of the differentiation process from the totipotent stem cell. This knowledge is essential to understanding the mechanisms behind congenital diseases and fetal malformation, and eventually, how to treat diseases using stem cells.

“Being able to follow the differentiation process of every cell is the Holy Grail of developmental biology.” says Qiaolin Deng, researcher at the Department of Physiology and Pharmacology, Karolinska Institutet, and Karolinska University Hospital, Sweden.

Dr Deng has led the study, which has revealed new details of the critical phase between the attachment of the embryo to the uterus and the formation of the first anatomical axis, at which point the embryonic cells begin their journey towards creating a body, with a front and a back.

“It’s a critical period when the whole anatomical plane is created,” she says. “If it doesn’t go smoothly, it can cause fetal malformation or death.”

However, the developmental states of the cells that take part in the process is not always the same. In order to map what happens in individual cells, the researchers used single-cell RNA sequencing on a total of 1,724 cells from 28 mouse embryos in four early stages of development (5.25 to 6.5 days old). An average of 8,577 genes were expressed in each cell.

Using bioinformatic analysis, the cells were then sorted into different cell types on the basis of which genes were active or inactive, allowing the researchers to see the order in which the genes were switched on. The result was a molecular road-map of the events that control cell differentiation.

“The study has revealed previously unknown details about what happens before the early embryo gains its first spatial orientation, and shown that the cells along the future head-tail axis have different differentiation potential,” says Dr Deng.

At the same time as the anatomical axis starts to form, another process gets underway in the female embryo, which contains two X chromosomes, one from each biological parent. Previous studies on mice have shown that the paternal X chromosome is first switched off completely in the embryo so that female embryos do not have twice the genetic activity as male. The paternal X chromosome copy remains switched off in the cells that form the placenta and the yolk sack, but is reactivated in the embryo’s cells. Then a random inactivation of the maternal or paternal X chromosome occurs. Female embryos therefore comprise a “mosaic” of cells, in which either the maternal or paternal X chromosome is active.

The new study shows that the first inactivation of the paternal X copy does not happen to the extent previously believed.

“What’s interesting, molecule-wise, is that the paternal X chromosomes that are reactivated never have been completely switched off. The random inactivation also takes place at different rates in the embryo’s cells.”

The results of the study shed new light on the early development of the embryo in animals, humans included.

“Knowledge of the events and factors that govern the development of the early embryo is indispensable for understanding miscarriages and congenital disease,” says Dr Deng. “Around three in every 100 babies are born with fetal malformation caused by faulty cellular differentiation.”

###

The study was conducted in collaboration with researchers at the University of Chinese Academy of Sciences, Shanghai Tech University, Tongji University (Shanghai) and the University of Sydney (Australia). It was financed with grants from the Swedish Research Council, SSMF, the Åke Wiberg foundation, the KID foundation, KI faculty-funded career grant and the Jeansson foundation.

Publication: “Single-cell RNA-seq reveals cellular heterogeneity of pluripotency transition and X-chromosome dynamics during early mouse development”. Shangli Cheng, Yu Pei, Liqun He, Guangdun Peng, Björn Reinius, Patrick P L Tam, Naihe Jing, Qiaolin Deng. Cell Reports, online 5 March 2019.

Media Contact
Press Office, Karolinska Institutet
[email protected]
http://dx.doi.org/10.1016/j.celrep.2019.02.031

Tags: BioinformaticsBiologyCell BiologyDevelopmental/Reproductive BiologyGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025
blank

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

August 22, 2025

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Birth Weight Linked to Maternal, Neonatal PFOS Levels

β-Elemene’s Therapeutic Promise for Glioma, CNS Diseases

Wireless Contact Lenses: Enabling Eye-Machine Interaction Through Blink-Based Encoding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.