• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Molecular design strategy reveals near infrared-absorbing hydrocarbon

Bioengineer by Bioengineer
October 17, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Norihito Fukui

Nagoya University researchers have synthesized a unique molecule with a surprising property: it can absorb near infrared light. The molecule is made only of hydrogen and carbon atoms and offers insights for making organic conductors and batteries. The details were published in the journal Nature Communications.

Organic chemist Hiroshi Shinokubo and physical organic chemist Norihito Fukui of Nagoya University work on designing new, interesting molecules using organic, or carbon-containing, compounds. In the lab, they synthesized an aromatic hydrocarbon called methoxy-substituted as-indacenoterrylene. This molecule has a unique structure, as its methoxy groups are located internally rather than at its periphery.

“Initially, we wanted to see if this hydrocarbon demonstrated novel phenomena due to its unique structure,” says Fukui.

But during their investigations, the researchers discovered they could convert it into a new bowl-shaped hydrocarbon called as-indacenoterrylene.

“We were surprised to find that this new molecule exhibits near infrared absorption up to 1300 nanometers,” Shinokubo explains.

What’s unique about as-indacenoterrylene is not that it absorbs near infrared light. Other hydrocarbons can do this as well. as-indacenoterrylene is interesting because it does this despite being made of only 34 carbon and 14 hydrogen atoms, without containing other kinds of stabilizing atoms at its periphery.

When the scientists conducted electrochemical measurements, theoretical calculations, and other tests, they found that as-indacenoterrylene was intriguingly stable and also had a remarkably narrow gap between its highest occupied molecular orbital (HOMO) and its lowest unoccupied molecular orbital (LUMO). This means that the molecule has two electronically different subunits, one that donates and another that withdraws electrons. The narrow HOMO-LUMO gap makes it easier for electrons to become excited within the molecule.

“The study offers an effective guideline for the design of hydrocarbons with a narrow HOMO-LUMO gap, which is to fabricate molecules with coexisting electron-donating and electron-withdrawing subunits,” says Fukui. “These molecules will be useful for the development of next-generation solid-state materials, such as organic conductors and organic batteries.”

The team next plans to synthesize other near infrared-absorbing aromatic hydrocarbons based on the design concepts garnered in this current study.

###

This study, “as-Indaceno [3,2,1,8,7,6-ghijklm] terrylene as a near-infrared absorbing C70-fragment,” was published in the journal Nature Communications on August 3, 2020, at DOI: 10.1038/s41467-020-17684-6.

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics – Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry – Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.

Website: http://en.nagoya-u.ac.jp/

Media Contact
Hiroshi Shinokubo
[email protected]

Original Source

http://en.nagoya-u.ac.jp/research/activities/news/2020/10/molecular-design-strategy-reveals-near-infrared-absorbing-hydrocarbon.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17684-6

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

Oncotarget: Induction of phenotypic changes in HER2-postive breast cancer cells

IMAGE

Oncotarget: Th1 cytokines potentiate apoptosis of breast cancer cells and suppress tumor growth

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In