• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Molecular bridges power up printed electronics

Bioengineer by Bioengineer
February 25, 2021
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Graphene Flagship researchers boost the efficiency of conductive inks and devices connecting layered materials flakes with small molecules

IMAGE

Credit: University of Strasbourg

The exfoliation of graphite into graphene layers inspired the investigation of thousands of layered materials: amongst them transition metal dichalcogenides (TMDs). These semiconductors can be used to make conductive inks to manufacture printed electronic and optoelectronic devices. However, defects in their structure may hinder their performance. Now, Graphene Flagship researchers have overcome these hurdles by introducing ‘molecular bridges’- small molecules that interconnect the TMD flakes, thereby boosting the conductivity and overall performance.

The results, published in Nature Nanotechnology, come from a multidisciplinary collaboration between Graphene Flagship partners the University of Strasbourg and CNRS, France, AMBER and Trinity College Dublin, Ireland, and Cambridge Graphene Centre, University of Cambridge, UK. The employed molecular bridges increase the carrier mobility – a physical parameter related to the electrical conductivity – tenfold.

TMD inks are used in many fields, from electronics and sensors to catalysis and biomedicine. They are usually manufactured using liquid-phase exfoliation, a technique developed by the Graphene Flagship that allows for the mass production of graphene and layered materials. But, although this technology yields high volumes of product, it has some limitations. The exfoliation process may create defects that affect the layered material’s performance, particularly when it comes to conducting electricity.

Inspired by organic electronics – the field behind successful technologies such as organic light-emitting diodes (OLEDs) and low-cost solar cells – the Graphene Flagship team found a solution: molecular bridges. With these chemical structures, the researchers managed to kill two birds with one stone. First, they connected TMD flakes to one another, creating a network that facilitates the charge transport and conductivity. The molecular bridges double up as walls, healing the chemical defects at the edges of the flakes and eliminating electrical vacancies that would otherwise promote energy loss.

Furthermore, molecular bridges provide researchers with a new tool to tailor the conductivity of TMD inks on demand. If the bridge is a conjugated molecule – a structure with double bonds or aromatic rings – the carrier mobility is higher than when using saturated molecules, such as hydrocarbons. “The structure of the molecular bridge plays a key role,” explains Paolo Samorì, from Graphene Flagship partner the University of Strasbourg, France, who led the study. “We use molecules called di-thiols, which you can readily buy from any chemical supplier’s catalogue,” he adds. Their available structural diversity opens a world of possibilities to regulate the conductivity, adapting it to each specific application. “Molecular bridges will help us integrate many new functions in TMD-based devices,” continues Samorì. “These inks can be printed on any surface, like plastic, fabric or paper, enabling a whole variety of new circuitry and sensors for flexible electronics and wearables.”

Maria Smolander, Graphene Flagship Work Package Leader for Flexible Electronics, adds: “This work is of high importance as a crucial step towards the full exploitation of solution-based fabrication methods like printing in flexible electronics. The use of the covalently bound bridges improves both the structural and electrical properties of the thin layers based on TMD flakes.”

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel, adds: “The Graphene Flagship pioneered both liquid phase exfoliation and inkjet printing of graphene and layered materials. These techniques can produce and handle large volumes of materials. This paper is a key step to make semiconducting layered materials available for printed, flexible and wearable electronics, and yet again pushes forward the state of the art.”

###

Media Contact
Fernando Gomollon-Bel
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41565-021-00857-9

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer ChemistrySuperconductors/SemiconductorsTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Shape-Shifting Biphasic Liquids with Bistable Microdomains

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Diagnoses Structural Heart Disease via ECG

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Shape-Shifting Biphasic Liquids with Bistable Microdomains

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.