• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Moffitt researchers identify effective drug combination against uveal melanoma

Bioengineer by Bioengineer
July 8, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HDAC inhibitors prevent MEK inhibitor resistance and enhance MEK anti-tumor properties in uveal melanoma

TAMPA, Fla. – Uveal melanoma is a very aggressive type of melanoma that affects the eye. It is a rare disorder, affecting an estimated 2,500 people in the United States each year. However, nearly half of uveal melanoma patients will develop metastatic disease that migrates to other part of the body, primarily the liver. The prognosis for patients with metastatic uveal melanoma is very poor, with median survival of only 17 to 20 months. Researchers in Moffitt Cancer Center’s Donald A. Adam Melanoma and Skin Cancer Center of Excellence are working to change that. They have identified a new drug combination that is effective against metastatic uveal melanoma cells in preclinical studies. Their findings were published in Clinical Cancer Research.

The MAPK protein signaling pathway is commonly deregulated in melanoma of the skin and uveal melanoma. Drugs that target a protein called MEK, which is involved in the MAPK signaling pathway, have significantly improved the outcomes of patients with melanoma of the skin. However, a recent phase 3 clinical trial in uveal melanoma revealed that patients treated with a MEK inhibitor plus chemotherapy had no improvement in survival over those patients treated with chemotherapy alone.

Many patients with uveal melanoma quickly develop resistance to MEK inhibitors. Moffitt researchers, in collaboration with scientists from the UF Health Cancer Center and Sylvester Comprehensive Cancer Center, wanted to determine how this resistance develops and identify additional drugs that could be used in combination with MEK inhibitors to target uveal melanoma cells for destruction.

The researcher team performed laboratory experiments with uveal melanoma cell lines and discovered that MEK inhibitors blocked their growth; however, this inhibition was short-lived and eventually the cell lines developed resistance and continued to grow. The researchers used proteomics analysis to determine which signaling pathways were activated during MEK inhibitor resistance.

“We identified a number of putative escape pathways that were upregulated following MEK inhibition, including the PI3K/AKT pathway, ROR1/2 and IGF-1R signaling,” explained Keiran Smalley, PhD, director of Moffitt’s Donald A. Adam Melanoma and Skin Cancer Center of Excellence. They also discovered that signaling through the YAP protein contributed to MEK inhibitor resistance.

Since there are no known drugs that are able to target both AKT and YAP signaling, the researchers performed a drug screen of 289 compounds to identify those that could limit escape from MEK inhibition. The drug type with the biggest impact across four different uveal melanoma cell lines were histone deacetylase (HDAC) inhibitors. HDACs regulate the expression level of many genes involved in cancer development, and several HDAC inhibitors are currently approved to treat different types of cancer. The researchers discovered that, of the HDAC inhibitors investigated, panobinostat was the most effective at blocking the development of resistance through YAP and AKT and enhancing the effects of MEK inhibitors in uveal melanoma cell lines. Additionally, combination treatment with panobinostat and the MEK inhibitor trametinib was more effective at reducing uveal melanoma tumor growth in mice than either agent alone.

They hope that the preclinical findings will lead to the initiation of clinical trials in uveal melanoma patients. “Our finding that a clinically approved pan-HDAC inhibitor was effective at simultaneously limiting YAP and AKT signaling in uveal melanoma cells suggests this could be a good candidate for future clinical development,” explained Smalley.

###

The study was supported by funds from the Bankhead-Coley Program of the State of Florida.

About Moffitt Cancer Center

Moffitt is dedicated to one lifesaving mission: to contribute to the prevention and cure of cancer. The Tampa-based facility is one of only 50 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s scientific excellence, multidisciplinary research, and robust training and education. Moffitt is a Top 10 cancer hospital and has been nationally ranked by U.S. News & World Report since 1999. Moffitt devotes more than 2 million square feet to research and patient care. Moffitt’s expert nursing staff is recognized by the American Nurses Credentialing Center with Magnet® status, its highest distinction. With more than 6,000 team members, Moffitt has an economic impact in the state of $2.5 billion. For more information, call 1-888-MOFFITT (1-888-663-3488), visit MOFFITT.org, and follow the momentum on Facebook, Twitter and YouTube.

Media Contact
Kim Polacek
[email protected]

Related Journal Article

https://moffitt.org/newsroom/press-release-archive/2019/moffitt-researchers-identify-effective-drug-combination-against-uveal-melanoma-in-preclinical-studies/
http://dx.doi.org/10.1158/1078-0432.CCR-18-3382

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.