• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Modeling gas diffusion in aggregated soils

Bioengineer by Bioengineer
May 7, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Timothy Clough

Agricultural soils contribute to 16% of total Greenhouse gas emissions, particularly nitrous oxide (N2O). Migration of gases in agricultural subsurface and emission across the soil-atmosphere interface is primarily diffusion-controlled and is explained by soil-gas diffusivity. Since experimental determination of soil-gas diffusivity demands expensive apparatus and time-consuming controlled laboratory measures, predictive models are commonly used to estimate diffusivity from easy-to-measure soil properties like soil total porosity and soil-air content.

In a recently published article in the Soil Science Society of America Journal, researchers introduced a descriptive soil-gas diffusivity model. Presented as a two-region soil gas diffusivity model, it was developed based on measured gas diffusivity data taken from two agricultural soils from Peradeniya- Sri Lanka under different soil density conditions.

Researchers identified that pore network in agricultural soils exhibits two distinct pore regions: inter-aggregate and intra-aggregate. As such, they constitute a bimodal pore structure. The Two-region model developed in the study could adequately parameterize and characterize the soil-gas diffusivity in selected bimodal soils outperforming the conventional models.

The developed two-region model provides a tool to accurately estimate gas diffusion in aggregated soils, thus providing models to quantify the gas exchange between soil and atmosphere with respect to different land use and water management practices.

###

Adapted from Jayarathne, J., Deepagoda Thuduwe Kankanamge, C., Clough, T.J., Thomas, S., Elberling, B. and Smits, K. (2020), Gas-Diffusivity based characterization of aggregated agricultural soils. Soil Sci. Soc. Am. J. Accepted Author Manuscript.

Media Contact
Rachel Leege
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/saj2.20033

Tags: AgricultureBiochemistryClimate ChangeEarth ScienceEcology/EnvironmentGeographyGeology/SoilPlant SciencesResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Winter Waterbirds Adapt to Severe Drought Challenges

Winter Waterbirds Adapt to Severe Drought Challenges

September 7, 2025
blank

Honey Bee Gene Expression Altered by Electric Fields

September 7, 2025

Porcine Placenta Peptide Boosts Hair Health: Studies

September 7, 2025

Debunking Myths: Animal Encounters with Big Cats, Crocs

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Childhood Trauma, HIV, and Women’s Mental Health Insights

9-Fluorenone Sulfonamides: Dual Inhibitors of SARS-CoV-2 Proteases

Shikonin Blocks EMT in Glioblastoma via p53 Activation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.