• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Model development is crucial in understanding climate change

Bioengineer by Bioengineer
July 15, 2019
in Science
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Advances in Atmospheric Sciences

Numerical models are a key tool for climate scientists in understanding the past, present and future climate change arising from natural, unforced variability or in response to changes, according to Dr Qing Bao, Research Fellow at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), and the corresponding author of a recently published study.

“Climate changes, such as global warming, substantially influence human society in all aspects, and climate prediction is a constant hot topic in the climate science community,” says Dr Bao. “The Coupled Model Intercomparison Project [CMIP], organized under the auspices of the World Climate Research Programme’s Working Group on Coupled Modelling, uses state-of-the-art climate models to provide a physical evidence base for policymakers, such as the IPCC [Intergovernmental Panel on Climate Change]”.

Dr Bao and his model team–a group of researchers from LASG/IAP–are in charge of the development of the atmospheric model of CAS’ FGOALS-f3-L climate model. They recently completed the AMIP (Atmospheric Model Intercomparison Project) simulations in the sixth phase of CMIP and published their datasets of the ESGF (Earth System Grid Federation) nodes as a data description paper in Advances in Atmospheric Sciences.

The Finite-volume Atmospheric Model (FAMIL) in FGOALS-f3-L, which is the new-generation AGCM (atmospheric general circulation model) of the Spectral Atmosphere Model of LASG (SAMIL), has been fixed for the CMIP6 experiments in 2017. In this version, the dynamical core and model physics parameterization scheme have been substantially updated. The new model is fast in completing huge computing tasks and overcomes some model biases related to climate sensitivity and cloud microphysics from the last version. The current version shows good ability not only in capturing large-scale patterns of climatological mean precipitation and surface temperature, but is also good at reflecting intraseasonal events like MJO (Madden-Julian Oscillation) and typhoons, which were a challenge for the CMIP5 models, according to Dr He, the first author of this paper.

Following the design of the AMIP experiments, three ensemble simulations were carried out over the period 1979-2014, which were forced by monthly mean observed sea surface temperature and sea ice, as recommended by the CMIP6 projects. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets.

“Preliminary evaluation suggests that FGOALS-f3-L can capture the basic patterns of atmospheric circulation and precipitation well, and these datasets could contribute to the benchmark of current model behaviors for the desired continuity of CMIP,” Dr Bao explains. “Analysis of these datasets will also be helpful in understanding the sources of model biases and be of benefit to the development of climate forecast systems.”

###

Media Contact
Ms Zheng Lin
[email protected]

Original Source

http://english.iap.cas.cn/RE/201907/t20190715_213049.html

Related Journal Article

http://dx.doi.org/10.1007/s00376-019-9027-8

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceMeteorologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

nSOFA Scores Forecast Extended Ventilation in Neonates

Unrecognized Lean MASLD in U.S. Adults Revealed

Muscle Metrics Link Malnutrition Risks in Older Patients

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.