• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mixing it up: A low-cost way to make efficient, stable perovskite solar cells

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘Microfluidic processing’ could help to make a competitive printed photovoltaics industry a reality

A key component of next-generation solar panels can be created without expensive, high-temperature fabrication methods, demonstrating a pathway to large scale, low-cost manufacturing for commercial applications.

Nickel oxide (NiO) is used as an inexpensive hole-transport layer in perovskite solar cells because of its favourable optical properties and long-term stability.

Making high-quality NiO films for solar cells usually requires an energy intensive and high-temperature treatment process called thermal annealing, which is not only costly, but also incompatible with plastic substrates, until now precluding the use of NiO in the proposed manufacture of printed photovoltaics at commercial scale.

However, researchers at the ARC Centre of Excellence in Exciton Science, based at Monash University, have identified a way to create NiO films of sufficient quality in solution and at relatively low temperatures of less than 150 degrees Celsius.

The researchers, in collaboration with their colleagues at CSIRO, Australia’s national science agency, used 4-hydroxybenzoic acid (HBA) or trimethyloxonium tetrafluoroborate (Me3OBF4) ligand-modified NiO nanoparticles and a microfluidic mixer, which promotes high-pressure mixing of low volume liquids, to distribute the nanoparticles evenly prior to depositing them on the substrate.

The chemical process, developed in collaboration with the Australian National Fabrication Facility, could contribute to the scalable fabrication of inorganic and inexpensive, high-performance films able to be used in the commercial production of flexible solar panels.

The researchers have recorded power-conversion efficiencies of 17.9% and 17.5% respectively in prototype devices, compared to 16% for a previous comparable approach, which lacked the advantages of the ligand exchange and also required a post-processing oxygen-plasma treatment step.

Significantly, the new devices exhibited just a 0.2% reduction in efficiency over an intensive 300-hour testing period, providing a strong indication of their potential suitability for commercial applications.

Joint lead author Monika Michalska of Monash University said: “Our work showcases that high-temperature processing of functional materials for solar cells can be omitted using facile processing ways. It is a crucial step for commercialization of perovskite technology.”

###

The results have been published in the journal Solar RRL.

Media Contact
Iain Strachan
[email protected]

Original Source

https://excitonscience.com/news/mixing-it-low-cost-way-make-efficient-stable-perovskite-solar-cells-commercial-scale

Related Journal Article

http://dx.doi.org/10.1002/solr.202100342

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Sperm Motility: Insights from Chicken Genetics

Tailored Therapy and 6-Month Outcomes in MIS-C

Gut Microbes and Metabolism Linked to Childhood Constipation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.