• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mixing it up: A low-cost way to make efficient, stable perovskite solar cells

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘Microfluidic processing’ could help to make a competitive printed photovoltaics industry a reality

A key component of next-generation solar panels can be created without expensive, high-temperature fabrication methods, demonstrating a pathway to large scale, low-cost manufacturing for commercial applications.

Nickel oxide (NiO) is used as an inexpensive hole-transport layer in perovskite solar cells because of its favourable optical properties and long-term stability.

Making high-quality NiO films for solar cells usually requires an energy intensive and high-temperature treatment process called thermal annealing, which is not only costly, but also incompatible with plastic substrates, until now precluding the use of NiO in the proposed manufacture of printed photovoltaics at commercial scale.

However, researchers at the ARC Centre of Excellence in Exciton Science, based at Monash University, have identified a way to create NiO films of sufficient quality in solution and at relatively low temperatures of less than 150 degrees Celsius.

The researchers, in collaboration with their colleagues at CSIRO, Australia’s national science agency, used 4-hydroxybenzoic acid (HBA) or trimethyloxonium tetrafluoroborate (Me3OBF4) ligand-modified NiO nanoparticles and a microfluidic mixer, which promotes high-pressure mixing of low volume liquids, to distribute the nanoparticles evenly prior to depositing them on the substrate.

The chemical process, developed in collaboration with the Australian National Fabrication Facility, could contribute to the scalable fabrication of inorganic and inexpensive, high-performance films able to be used in the commercial production of flexible solar panels.

The researchers have recorded power-conversion efficiencies of 17.9% and 17.5% respectively in prototype devices, compared to 16% for a previous comparable approach, which lacked the advantages of the ligand exchange and also required a post-processing oxygen-plasma treatment step.

Significantly, the new devices exhibited just a 0.2% reduction in efficiency over an intensive 300-hour testing period, providing a strong indication of their potential suitability for commercial applications.

Joint lead author Monika Michalska of Monash University said: “Our work showcases that high-temperature processing of functional materials for solar cells can be omitted using facile processing ways. It is a crucial step for commercialization of perovskite technology.”

###

The results have been published in the journal Solar RRL.

Media Contact
Iain Strachan
[email protected]

Original Source

https://excitonscience.com/news/mixing-it-low-cost-way-make-efficient-stable-perovskite-solar-cells-commercial-scale

Related Journal Article

http://dx.doi.org/10.1002/solr.202100342

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

Two-Step Excitation Powers and Directs Exotic Nanolight

Two-Step Excitation Powers and Directs Exotic Nanolight

October 7, 2025
blank

Scientists Unveil Breakthrough Compound Poised to Revolutionize Traumatic Brain Injury Treatment

October 7, 2025

Transforming Gemstone Polishing Waste into Smart Cement: A Sustainable Innovation

October 7, 2025

Advanced Battery Technology Predicts If Your EV Will Make It Home

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    812 shares
    Share 324 Tweet 203
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wildlife Tracking Animations Reveal Insights into Animal Movement Patterns

Understanding Diabetic Platelets: Impacts and Treatment Options

Neonatal Resuscitation Techniques for Bradycardia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.