• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mixed and matched: Integrating metal-organic frameworks into polymers for CO2 separation

Bioengineer by Bioengineer
February 8, 2021
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New strategy boosts the performance of membranes for filtering CO2 from industrial emissions

IMAGE

Credit: Chris LeBoutillier on Pexels

One of humanity’s biggest challenges right now is reducing our emissions of greenhouse gases into the atmosphere. Research groups worldwide are trying to find ways to efficiently separate carbon dioxide (CO2) from the mixture of gases emitted from industrial plants and power stations. Among the many strategies for accomplishing this, membrane separation is an attractive, inexpensive option; it involves using polymer membranes that selectively filter CO2 from a mix of gases.

Recent studies have focused on adding low amounts of metal-organic frameworks (MOFs) into polymer matrices to enhance their properties. MOFs are compounds made of a metallic center bonded to organic molecules in a very orderly fashion, producing porous crystals. When added to polymer membranes, MOFs can enhance their gas separation performance as well as their stability and tolerance to harsh conditions. However, one of the main issues of integrating MOFs into polymer membranes is finding compatible compounds with favorable interactions, such as covalent bonds. Unfortunately, those which have been tried require very expensive synthesis and materials.

To tackle this issue, an international team of scientists recently conducted a study that was published in ACS Applied Materials & Interfaces. Led by Professor Tae-Hyun Kim from Incheon National University, Korea, the scientists focused on incorporating a zirconium-based MOF called ‘UiO-66’ into a multi-polymer matrix they had previously developed. They achieved this by modifying the MOFs so that they would readily form covalent bonds with the main strands of the polymer matrix.

The scientists synthesized UiO-66-NB, which is UiO-66 with norbornene units, a small organic molecule. Through a simple synthesis process, norbornene units can become links in the main polymer chains of the matrix. In this way, the norbornene in UiO-66-NB incorporates the MOFs into the matrix, as Prof. Kim explains, “Instead of simply blending the MOFs and polymers, we found a new and efficient method for incorporating MOFs into the polymer matrix via covalent bonds; this strengthens the interactions at the interfaces of both compounds and creates defect-free polymer matrices.”

The characteristics and performance of the MOF-filled polymer membranes were outstanding: their permeability towards CO2 was enhanced without significantly compromising its selectivity. Their CO2/N2 separation performance approached the theoretical Robeson upper bound set in 2019. Additionally, the membranes were not only remarkably tolerant to harsh conditions such as high pressure or temperature switching, but also very stable over long periods of time of almost a year.

These achievements are a step in the right direction toward removing the barriers for commercialization that these polymer membranes face for industrial applications. Excited about the results, Prof. Kim remarks, “We believe our findings will open up new strategies to assess potential interfaces between MOFs and polymer matrices for high-performance gas separation.”

Let us hope this technology keeps evolving so that we can keep excess CO2 away from our atmosphere!

###

Reference

Authors: Iqubal Hossain (1), Asmaul Husna (1), Somboon Chaemchuen (2), Francis Verpoort (3), and Tae-Hyun Kim (1)

Title of original paper: Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH2 into PEG/PPG?PDMS-Based Rubbery Polymer for Efficient CO2 Separation

Journal: ACS Applied Materials & Interfaces

DOI: 10.1021/acsami.0c18415

Affiliations:

(1) Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University

(2) State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

(3) Department of Chemistry, Ghent University

About Incheon National University

Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

About the author

Dr. Tae-Hyun Kim is a Chemistry Professor at Incheon National University (INU), Korea. He is also the director of the Research Institute of Basic Sciences at INU. Prof Kim received a Ph.D. in Chemistry from Cambridge University, UK and conducted his post-doctoral research at MIT, USA. Before joining INU, he was a senior research associate at Eastman Chemical Co., US. His research interests lie in the development of organic materials for various applications, including fuel cells, lithium batteries, water electrolysis, and gas separation. He has authored over 120 SCI journal articles and holds more than 50 patents. He loves teaching and communicating with his students.

Media Contact
Tae-Hyun Kim
[email protected]

Original Source

http://www.inu.ac.kr/user/boardList.do?command=view&page=1&boardId=555310&boardSeq=612345&id=inueng_050700000000&NewIpsi=&NewEng=&NewComm=&NewSugi=&categoryDepth=0005

Related Journal Article

http://dx.doi.org/10.1021/acsami.0c18415

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPollution/RemediationResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Retroelement Expansions Drive Stingless Bee Genome Evolution

Retroelement Expansions Drive Stingless Bee Genome Evolution

January 11, 2026
Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

January 11, 2026

Unlocking Sperm Motility: Insights from Chicken Genetics

January 11, 2026

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    60 shares
    Share 24 Tweet 15
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Insights into E-Commerce Consumer Behavior

Empowering Hong Kong Teens: Mental Health Leadership Training

Self-Care and Efficacy in Older Adults’ Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.