• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

‘Microlesions’ in epilepsy discovered by novel technique

Bioengineer by Bioengineer
December 17, 2014
in Neuroscience
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using an innovative technique combining genetic analysis and mathematical modeling with some basic sleuthing, researchers have identified previously undescribed microlesions in brain tissue from epileptic patients. The millimeter-sized abnormalities may explain why areas of the brain that appear normal can produce severe seizures in many children and adults with epilepsy.

'Microlesions' in epilepsy discovered by novel technique

Microlesion made up of neurons that have lost connections with one another. Photo Credit: Jeffrey Loeb

The findings, by researchers at the University of Illinois at Chicago College of Medicine, Wayne State University and Montana State University, are reported in the journal Brain.

Epilepsy affects about 1 percent of people worldwide. Its hallmark is unpredictable seizures that occur when groups of neurons in the brain abnormally fire in unison. Sometimes epilepsy can be traced back to visible abnormalities in the brain where seizures start, but in many cases, there are no clear abnormalities or scaring that would account for the epileptic activity.

“Understanding what is wrong in human brain tissues that produce seizures is critical for the development of new treatments because roughly one third of patients with epilepsy don’t respond to our currently available medications,” said Dr. Jeffrey Loeb, professor and head of neurology and rehabilitation in the UIC College of Medicine and corresponding author on the study. “Knowing these microlesions exist is as huge step forward in our understanding of human epilepsy and present new targets for treating this disease.”

humanepileptic cellular

Clusters of differentially expressed genes predict cellular abnormalities. Photo Credit: Jeffrey Loeb

Loeb and colleagues searched for cellular changes associated with epilepsy by analyzing thousands genes in tissues from 15 patients who underwent surgery to treat their epilepsy. They used a mathematical modeling technique called cluster analysis to sort through huge amounts of genetic data.

Using the model, they were able to predict and then confirm the presence of tiny regions of cellular abnormalities – the microlesions – in human brain tissue with high levels of epileptic electrical activity, or ‘high-spiking’ areas where seizures begin.

“Using cluster analysis is like using a metal detector to find a needle in a haystack,” said Loeb. The model, he said, revealed 11 gene clusters that “jumped right out at us” and were either up-regulated or down-regulated in tissue with high levels of epileptic electrical activity compared to tissue with less epileptic activity from the same patient.

When they matched the genes to the types of cells they came from, the results predicted that there would be reductions of certain types of neurons and increases in blood vessels and inflammatory cells in brain tissue with high epileptic activity.

When Fabien Dachet, an expert in bioinformatics research at UIC and first author of the study, went back to the tissue samples and stained for these cells, he found that all of the prediction were correct- there was a marked increase in blood vessels, inflammatory cells, and there were focal microlesions made up of neurons that had lost most of their normal connections that allow them to communicate with one another. “We think that these newly found microlesions lead to spontaneous, abnormal electrical currents in the brain that lead to epileptic seizures,” said Loeb.

Loeb and his colleagues at UIC are using the same approach to look for the clusters of differentially expressed genes associated with ALS, a neurodegenerative disease, and in brain tumors. “We now have a way to predict cellular changes by simply measuring the genetic composition, with some fairly simple calculations, between more- and less-affected epileptic human tissues,” explained Loeb.

“This technique gives us the ability to discover previously unknown cellular abnormalities in almost any disease where we have access to human tissues,” Loeb said. He is currently developing at UIC a national ‘neurorepository’ of electrically mapped and genetically analyzed brain tissue for such studies.

Story Source:

The above story is based on materials provided by University of Illinois at Chicago.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirusZoology/Veterinary ScienceWeaponryVaccineUrogenital SystemWeather/StormsViolence/CriminalsVirologyVehiclesVaccinesUrbanization

Recent Posts

  • The early bird gets the fruit: Fossil provides earliest evidence of fruit-eating by any animal
  • Wood sharpens stone: boomerangs used to retouch lithic tools
  • Pre-fertilization DNA transfer to avoid mitochondrial disease inheritance appears safe
  • New standardized framework allows conservationists to assess benefits of non-native species
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In