• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Microbiome confers resistance to cholera

Bioengineer by Bioengineer
June 29, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Not everyone exposed to infectious diarrhea-causing bacteria gets sick

IMAGE

Credit: Centers for Disease Control and Prevention

Cholera can kill within hours if left untreated, and it sickens as many as 4 million people a year. In a new article in the journal Cell, researchers describe how gut bacteria helps people resist the disease.

Bacteria live everywhere on the planet — even inside the human body. UCR microbiologist Ansel Hsiao studies whether the bacteria living in our bodies, collectively known as the human microbiome, can protect people from diseases caused by external bacteria such as Vibrio cholerae, which lives in waterways and causes cholera.

Hsiao’s team examined the gut microbiomes from people in Bangladesh, where many suffer from cholera as a result of contaminated food, water and poor sanitation infrastructure. “When people get sick, the diarrhea gets flushed into water systems that people drink from, and it’s a negative cycle,” Hsiao explained.

His team wanted to see whether prior infections or other stresses, like malnutrition, make people more vulnerable, as compared to Americans who don’t face these same pressures.

The findings surprised the group, which expected stressed Bangladeshi microbiomes would allow for higher rates of infection. Instead, they saw infection rates varied greatly among individuals in both populations, suggesting susceptibility is based on a person’s unique microbiome composition — not the place they’re from.

Vibrio cholerae spends most of its time outside of humans in aquatic environments. It doesn’t usually encounter bile, which mammals produce to help digest fats after a meal.

“Because bile is specific to the intestines of humans and animals, many microorganisms, including cholerae, have evolved ways to deal with it,” Hsiao said.

Once Vibrio cholerae enters a body, the presence of bile and lack of oxygen in the gut triggers previously dormant genes that enable it to survive in its human host. These genes are responsible for cholera’s virulence, helping Vibrio cholerae attach to intestinal walls and cause diarrhea.

Hsiao’s team identified one bacterium in the human microbiome, Blautia obeum, that can deactivate the cholera bacterium’s disease-causing mechanisms, preventing it from colonizing the intestines. They also figured out how this feat is accomplished.

Blautia obeum produces an enzyme that degrades salts in bile, which Vibrio cholerae uses as signals to control gene activity. When these bile salts are corrupted, the cholera-causing bacteria does not receive the signal to activate the dormant genes that cause infection.

Since it’s become clear that more Blautia obeum makes people less susceptible to cholera, a focus of future studies will be how to increase its presence in the gut. “We are extremely interested now in learning which environmental factors, such as diet, can boost levels of obeum,” Hsiao said.

Similar studies are also underway with regard to the virus causing another global pandemic — SARS-CoV-2. Hsiao is collaborating with several groups trying to understand how the microbiome changes with COVID-19 infection.

“One day, we may also understand whether and how the microbiome affects COVID-19 and makes people resistant to other illnesses we don’t currently have treatments for,” Hsiao said.

Media Contact
Jules Bernstein
[email protected]

Original Source

https://news.ucr.edu/articles/2020/06/29/microbiome-confers-resistance-cholera

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.05.036

Tags: BacteriologyBiologyCell BiologyDisease in the Developing WorldGenesInfectious/Emerging DiseasesMedicine/HealthMolecular BiologyPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Endocan Levels Surge in Hyperprolactinemia Patients

November 30, 2025

Cinnamic Acid Boosts Healing in Rat Tendon Injury

November 30, 2025

Assessing Healthcare Impacts: A Comprehensive Review

November 30, 2025

Ferroptosis: Key Factor in Sepsis Development

November 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Lateral Control in Semi-Autonomous Vehicles

Endocan Levels Surge in Hyperprolactinemia Patients

Cinnamic Acid Boosts Healing in Rat Tendon Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.