• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mice sleeping fitfully provide clues to insomnia

Bioengineer by Bioengineer
January 9, 2019
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genetically engineered mice mimic common sleep problems

Mice that sleep fitfully could help researchers unravel the mystery of insomnia.

Researchers at Washington University School of Medicine in St. Louis studied mice genetically modified to mimic the genetic disease neurofibromatosis type 1 (NF1), which is associated with sleep problems. They found that the animals, like some people with NF1, slept in short, irregular spurts. Studying these mice could help identify the molecular and cellular mechanisms that go awry and cause fragmented sleep patterns in people with and without the disease, the researchers said.

“The mice are a tool for us to understand how sleep disturbances arise and how sleep disruption contributes to problems with learning and attention,” said David H. Gutmann, MD, PhD, the Donald O. Schnuck Family Professor of Neurology and the study’s senior author. “This could apply both to people with NF1 and others without NF1 who also have sleep problems.”

The findings were published Jan. 4 in the Journal of Sleep Research.

As many as half of people with NF1 – a condition that causes benign tumors in the brain and on nerves throughout the body – have difficulty falling or staying asleep. Learning disabilities and attention problems also are common in children with NF1, and both may be exacerbated by poor sleep. But doctors don’t know why some children with NF1 develop sleep problems and others don’t, nor can they do much to help them sleep better.

“Right now we just treat children and adults with NF1 and sleep problems like we treat patients without NF1 because we don’t understand what causes them,” said Gutmann, who also directs the Neurofibromatosis Center at Washington University.

Co-first author Corina Anastasaki, PhD, an instructor in neurology, bred mice with a mutation in their Nf1 gene similar to what is seen in people with NF1. Then, co-first author Nicholas Rensing and Michael J. Wong, MD, PhD, the Allen P. and Josephine B. Green Professor of Pediatric Neurology, fitted onto the mice miniature versions of the caps people wear for sleep studies, enabling them to measure brain waves and identify sleep patterns.

Mice normally sleep during the day and, like people, cycle several times from deep, dreamless sleep to REM sleep – or dreaming – and back again. Mice with an Nf1 mutation, however, tended to wake up soon after they entered deep sleep. The result was a fragmented, and probably not restful, day of sleep.

“Throughout the whole night and day, they fell asleep and woke up when they shouldn’t have,” Anastasaki said. “They fell into deep sleep, but they didn’t stay there.”

Although the mice were engineered to mimic human NF1 disease, they could yield insights about the biological underpinnings of sleep in general, which could help people with sleep problems unrelated to NF1. About a third of American adults report some degree of insomnia, and 15 percent have chronic insomnia that lasts three months or more.

“It is hard to study sleep problems in people because there are so many factors that influence how well you sleep – maybe you’re stressed out, maybe you’re sick, maybe you’re taking care of a new baby,” Gutmann said. “But now we have a controlled system that we can use to start looking at which cells and proteins are involved, and which biological factors influence sleep quality. Only when we understand the problem better will we be able to find better ways to treat it.”

###

Media Contact
Diane Duke Williams
[email protected]
314-286-0111
http://dx.doi.org/10.1111/jsr.12816

Tags: Medicine/HealthneurobiologySleep/Sleep Disorders
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

CAR T-cell therapy generates lasting remissions in patients with multiple myeloma

February 24, 2021
IMAGE

Bearded seals are loud — but not loud enough

February 24, 2021

Study finds human-caused North Atlantic right whale deaths are being undercounted

February 24, 2021

Researchers use machine learning to identify autism blood biomarkers

February 24, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesGeneticsChemistry/Physics/Materials SciencesCell BiologyPublic HealthTechnology/Engineering/Computer ScienceClimate ChangeMaterialscancerEcology/EnvironmentBiologyMedicine/Health

Recent Posts

  • How SARS-CoV-2’s sugar-coated shield helps activate the virus
  • Antibodies recognize and attack different SARS-CoV-2 spike shapes
  • Scientists reveal details of antibodies that work against Zika virus
  • Scientists uncover new details of SARS-CoV-2 interactions with human cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In