• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Metabolic potential and molecular diversity of natural products from microorganisms

Bioengineer by Bioengineer
January 11, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Marine Life Science & Technology

Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms

Announcing a new publication for Marine Life Science & Technology journal. In this review article the authors Xiao-Yue Peng, Jin-Tao Wu, Chang?Lun Shao, Zhi-Yong Li, Min Chen and Chang-Yun Wang from the Ocean University of China, Qingdao, China, Yangzhou University, Yangzhou, China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China and Shanghai Jiao Tong University, Shanghai, China consider the metabolic potential and molecular diversity of natural products from microorganisms.

Microbial secondary metabolites have long been considered as potential sources of lead compounds for medicinal use due to their rich chemical diversity and extensive biological activities. However, many biosynthetic gene clusters remain silent under traditional laboratory culture conditions, resulting in repeated isolation of a large number of known compounds. Co-culture strategy simulates the complex ecological environment of microbial life by using an ecology-driven method to activate silent gene clusters of microorganisms and tap their metabolic potential to obtain novel bioactive secondary metabolites.

In this article the authors review representative studies from 2017 to 2020 on the discovery of novel bioactive natural products from co-cultured microorganisms. A series of natural products with diverse and novel structures have been discovered successfully by co-culture strategies, including fungus-fungus, fungus-bacterium, and bacterium-bacterium co-culture approaches. These novel compounds exhibited various bioactivities including extensive antimicrobial activities and potential cytotoxic activities, especially when it came to disparate marine-derived species and cross-species of marine strains and terrestrial strains.

The authors conclude that co-culture can be an effective strategy to tap the metabolic potential of microorganisms, particularly for marine-derived species, thus providing diverse molecules for the discovery of lead compounds and drug candidates.

###

Article reference: Xiao-Yue Peng, Jin-Tao Wu, Chang-Lun Shao, Zhi-Yong Li, Min Chen and Chang-Yun Wang, Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms, Marine Life Science & Technology, 2020, ISSN 2662-1746, https://doi.org/10.1007/s42995-020-00077-5

Keywords: Co-culture, Microorganisms, Secondary metabolites, Chemical diversity

Marine Life Science & Technology (MLST) provides a platform that introduces new discoveries and theories associated with marine organisms, bioresources, and biotechnology. The journal is intended for marine scientists, biological oceanographers, conservation biologists, marine technologists, policy makers and legislators. Accordingly, we publish original research papers across a broad range of marine life sciences and technologies with an emphasis on synergistic interactions of multiple disciplines. Both theoretical and practical papers are welcome, including laboratory and field experimental studies relevant to marine life science and technology. Focused reviews, viewpoints, comments, and short communications are also accepted. As the journal’s aim is to foster multidisciplinary approaches to marine sciences, authors are encouraged to emphasise the relevance of their work in relation across the journals key-disciplines.

For more information, please visit https://www.springer.com/journal/42995/

Editorial Board: https://www.springer.com/journal/42995/editors

MLST is available on SpringerLink (https://link.springer.com/journal/42995/volumes-and-issues).

Submissions to MLST may be made using ScholarOne ManuscriptsTM (https://mc03.manuscriptcentral.com/mlst).

Abstracted and indexed in:

Astrophysics Data System (ADS)

CNKI

Dimensions

EBSCO Discovery Service

Google Scholar

Institute of Scientific and Technical Information of China

Meta

Naver

OCLC WorldCat Discovery Service

ProQuest-ExLibris Primo

ProQuest-ExLibris Summon

TD Net Discovery Service

ISSN 2662-1746

Media Contact
Morgan Lyons
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s42995-020-00077-5

Tags: Earth ScienceFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Regulating the ribosomal RNA production line

January 22, 2021
IMAGE

A professor from RUDN University developed new liquid crystals

January 22, 2021

New technique builds super-hard metals from nanoparticles

January 22, 2021

No more needles for diagnostic tests?

January 22, 2021
Next Post
IMAGE

Electrically switchable qubit can tune between storage and fast calculation modes

IMAGE

The parasitic dinoflagellate Hematodinium infects marine crustaceans

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In