• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Memory impairment in mice reduced by soy derivate that can enter the brain intact

Bioengineer by Bioengineer
June 19, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ingestion of the protein fragment improved working and long-term memory in mice treated to simulate Alzheimer’s disease

IMAGE

Credit: William J. Potscavage Jr., Kyushu University

In a study that could help one day give a literal meaning to food for thought, researchers from Kyushu University in Japan have reported that a protein fragment that makes its way into the brain after being ingested can reduce memory degradation in mice treated to simulate Alzheimer’s disease.

Derived by breaking apart the proteins in soybeans, the memory-effecting molecule is classified as a dipeptide because it contains just two of the protein building blocks known as amino acids. Unique about the dipeptide used in the study is that it is currently the only one known to make the trip from a mouse’s stomach to its brain intact despite the odds against it.

“On top of the possibility of being broken down during digestion, peptides then face the challenge of crossing a highly selectively barrier to get from the blood into the brain,” says Toshiro Matsui, professor in the Faculty of Agriculture at Kyushu University and leader of the study published in npj Science of Food.

“While our previous studies were the first to identify a dipeptide able to make the journey, our new studies now show that it can actually affect memory in mice.”

Working in collaboration with researchers at Fukuoka University, the researchers investigated the effects of the dipeptide–named Tyr-Pro because it consists of the amino acids tyrosine and proline–by feeding it to mice for several days before and after injecting them with a chemical that is commonly used to simulate Alzheimer’s disease by impairing memory functions.

In tests to evaluate short-term memory by comparing a mouse’s tendency to explore different arms of a simple maze, impaired mice that had ingested the dipeptide over the past two weeks fared better than those that had not, though both groups were overall outperformed by mice without induced memory impairment. The same trend was also found in long-term memory tests measuring how long a mouse stays in the lighted area of an enclosure to avoid a mild electrical shock experienced in the dark area after having been trained in the box a day before.

Though there have been other reports suggesting some peptides can reduce the decline of brain functions, this is the first case where evidence also exists that the peptide can enter the brain intact.

“We still need studies to see if these benefits carry over to humans, but we hope that this is a step toward functional foods that could help prevent memory degradation or even improve our memories,” comments Matsui.

###

For more information about this research, see “Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in mice,” Mitsuru Tanaka, Hayato Kiyohara, Atsuko Yoshino, Akihiro Nakano, Fuyuko Takata, Shinya Dohgu, Yasufumi Kataoka, and Toshiro Matsui, npj Science of Food, https://doi.org/10.1038/s41538-020-0067-3

Media Contact
William J. Potscavage Jr.
[email protected]

Original Source

https://www.kyushu-u.ac.jp/en/researches/view/152

Related Journal Article

http://dx.doi.org/10.1038/s41538-020-0067-3

Tags: AgricultureAlzheimerBiologyFood/Food ScienceMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Boosting Yeast Efficiency as Biofactories for Valuable Plant Compound Production

October 24, 2025
Boosting Plant Growth: Indigenous Bacteria Against Nematodes

Boosting Plant Growth: Indigenous Bacteria Against Nematodes

October 24, 2025

Chemoenzymatic Creation of Medium- and Long-Chain TAGs

October 24, 2025

Indigenous Bacteria Boost Plant Growth, Combat Nematodes

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    188 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

What Your Eyes Reveal About Aging and Heart Health: Insights from New Research

Tackling Medical Imaging Data Gaps with Heterosync

Boosting Yeast Efficiency as Biofactories for Valuable Plant Compound Production

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.